Calculating Current HW

1. A light bulb with a current of 0.8 A is left burning for 20 min . How much electric charge passes through the filament of the bulb? $\left.\quad \begin{array}{rl}Q=\frac{E}{V}=Q & =\operatorname{Ixt} \\ & =0.8 \mathrm{~A}(1200 \mathrm{~s})\end{array}\right\}=960 \mathrm{C}$
2. How much electric current is there when 12C of charge pass a point in a circuit in 4.0 s ?

$$
I=\frac{Q}{E}=\frac{12 \mathrm{C}}{40 \mathrm{~S}}=3 \mathrm{~A}
$$

3. What is the current through a light bulb when it takes 24 s for 18 C of charge to pass through?

$$
I=\frac{Q}{E}=\frac{18 \mathrm{C}}{245}=0.75 \mathrm{~A}
$$

4. A small electric motor draws a current of 0.40 A . How long will it take for 8.0 C of charge to pass through it?

$$
t=\frac{Q}{I}=\frac{8.0 \mathrm{C}}{0.40 \mathrm{~A}}=20 \mathrm{~s}
$$

5. How much charge passes through the starting motor, if it takes 4.0 s to start a car and there is a current of 225A during that time? $\mathbb{Q}=I \times t$

$$
\begin{aligned}
& =225 \mathrm{~A}(4.05) \quad \text { Calculating Voltage HW } \\
& =900 \mathrm{C} \quad \text { Hen }
\end{aligned}
$$

6. A 12 V car battery supplies $1.5 \times 10^{3} \mathrm{C}$ of charge to the starting motor. How much energy is used to start the car?

HAMA ANVASNONOMO $E=V \cdot Q=12 \cdot 15 \times 10^{3}=180.000 \mathrm{~J}$
7. What amount of energy does a kettle use to boil water if it has 800 C of charge passing through it with a potential

8. What is the potential difference across a refrigerator if 75 C of charge transfers $9.0 \times 10^{3} \mathrm{~J}$ of energy to the compressor motor? $V=\frac{E}{Q}=\frac{9.0 \times 10^{3} \mathrm{~J}}{76}=120 \mathrm{~V}$
9. A flash of lightening transfers $1.5 \times 10^{9} \mathrm{~J}$ of electrical energy through a potential difference of $5.0 \times 10^{7} \mathrm{~V}$ between a cloud and the ground. Calculate the quantity of charge transferred in the lightning bolt. $Q=\frac{E}{V}=\frac{\$.5 \times 10^{9}}{5.0 \times 10^{7}}=30 \mathrm{C}$
10. If a charge of 0.30 C moves from one part to another in a conductor and, in doing so, releases 5.4 J of electrical energy, what is the potential difference between the two points?

$$
\begin{aligned}
V & =\frac{E}{Q} \\
& =\frac{5.4 \mathrm{~J}}{0.30 \mathrm{C}} \\
& =18 \mathrm{~V}
\end{aligned}
$$

