Name:

Date: _____

SIMPLE INTEREST

VS

COMPOUND INTEREST

 $I = P \times R \times T$

I = the total interest

P = the principal (the amount borrowed)

R = the interest rate (as a decimal)

T = the time in years

 $A = P (1 + i)^n$

A = the total amount to be repaid (principal + interest)

P = the principal

i = the interest rate (as a decimal)

n = the number of periods

EXAMPLE

If you put \$10,000 into a saving account at 5% for 5 years, what will the interest amount be for both?

$$I = $10,000 \times 0.05 \times 5$$

 $I = $2,500$

$$A = $10,000 (1 + 0.05)^{5}$$

 $A = $12,762$

Therefore total interest gained \$2,762

TRY THIS...

If you invested \$5,000 at 8% for 30 years, what will the interest amount be for both?

$$I = $5,000 \times 0.08 \times 30$$

$$A = $50,313$$

l = \$12,000

Note:

www.getsmarteraboutmoney.com has an online interactive compound interest calculator.

Simple and Compound Interest Questions:

1. How much interest would you earn on an \$8,000.00 deposit with an annual interest rate of 5 percent with simple interest over six years? The first calculation has been done for you.

I=Px(xt 1=2400

	Beginning of the Year	During the Year	End of the Year
Year 1	\$8,000	+(5% of \$8,000=\$400)	\$8,400
Year 2	\$8,400.00	+ (54. 04 \$2040 7 5400)	8,800
Year 3	3.800	+\$-100	9,200
Year 4	9200	+\$400	9,600
Year 5	9,600	+\$400	10,000
Year 6	10,000	+ \$ 400	10,400

If the same \$8000.00 is compounded annually for six years at 5% interest, how much would

olly is	6,1	Beginning of the Year	During the Year	End of the Year
A=POOLYO	Year 1	\$8,000	+(5% of \$8,000=\$400)	\$8,400
4=8000(10)	Year 2	\$8,400.00	+ (5% of \$8,400 = \$420	\$8820
800m	Year 3	\$8820	+ (5.1.01 \$8820)= \$41	11, \$9261
P: 10,1	Year 4	\$9261	+ (5% of \$911) = \$41	3 \$9724
P	Year 5	\$9724	+(5% of \$9724)= \$4	81.2 \$ 10,210.2
•	Year 6	\$10,210.2	+(5-1 of 10,210)=	\$510.51 \$10,72

	Year 6	\$10,210.2	+(5-1. of 10,210)= \$ 510.51	\$10,720						
	, conprunded									
3.										
	& simple interest									
	Year 1	8400-8400=	0							
	Year 2	8820 - 8800 = 20								
	Year 3	9261 - 9200 = 61								
	Year 4	9724 - 9600 = 124								
	Year 5	10210.2-10,000	= 210.2							
	Year 6	10720.71-10400= 320.71								