For each problem, include a complete solution. Remember to include let and therefore statements.

1. Suppose that two sides of a triangle are equal, and the third side is 10 cm greater than each of the other two. The perimeter of the triangle is 100 cm . Find the length of each side.
let \times represent the smaller side

$$
\begin{gathered}
x+x+(x+10)=100 \\
3 x+10=100 \\
\frac{3 x=90}{3}=\frac{3}{x=30}
\end{gathered}
$$

2. The perimeter of a rectangle is 156 cm . The length is twice as long as the width. Find the length and the width.
let x represent the width let $2 x$ rerpesent the length

$$
\begin{gathered}
2(2 x)+2 x=156 \\
4 x+2 x=156 \\
6 x=156 \\
x=26
\end{gathered}
$$

\therefore the length is 52 cm and the width is
3. Find four consecutive odd numbers whose sum is 240 .
let the numbers be

$$
\begin{aligned}
& x, x+2, x+4, x+6 \\
& x+(x+2)+(x+4)+(x+6)=240 \\
& 4 x+12=240 \\
& \frac{4 x}{4}=\frac{228}{4}=x=57
\end{aligned}
$$

\therefore The numbers are $57,59,61,63$

$$
\begin{array}{r}
0.15 x=5.85 \\
x=39
\end{array}
$$

5. A collection of 33 coins, consisting of nickels, dimes, and quarters, has a value of $\$ 3.30$. If there are three times as many nickels as quarters, and one-half as many dimes as nickels, how many coins of each kind are there?

	\#of coins	Valveinceats
nickels	$3 x$	$0.05(3 x)$
dimes	$\frac{3 x}{2}$	$0.10\left(\frac{3 x}{2}\right)$
quarters	x	$0.25(x)$
total	33	3.30

$$
0.05(3 x)+0.10\left(\frac{3 x}{2}\right)+0.25(x)=3.30
$$

mete ry $30.180 .15 x+0.15 x+0.25 x=3.30$ value of coins is $\$ 6.55$. How many nickels does she have?

	to f coins	value in cents
nickels	x	$0.05(x)$
dimes	$x+7$	$0.10(x+7)$
total		6.55

$$
\begin{aligned}
0.05(x)+0.10(x+7) & =6.55 \\
0.05 x+0.10 x+0.7 & =6.55
\end{aligned}
$$

6. Allison is 29 years older than Nicole. Fifteen years from now, Allison will be twice as old as Nicole. How old are they today?

15 years

	now	from now
Allison	$x+29$	$(x+29)+15=x+44$
Nicole	x	$x+15$

let x rep. Nicole's age in years
Allison's age $=2$ timer Nicoles age

$$
x+44=2(x+15)
$$

$$
x+44=2 x+30
$$

$$
\begin{aligned}
44-30=2 x-x \\
14=x
\end{aligned}>\begin{aligned}
& \text { Allison's } \\
& \\
& =14+29 \\
& \\
& =43 \text { years }
\end{aligned}
$$

