2017
2 The cylinder pictured below has a volume of $500 \mathrm{~cm}^{3}$ and a height of 10 cm .

Which of the following represents the radius of the cylix der, r, in centimetres?
Hint:
$V=\pi r^{2} h$
(a) $\sqrt{\frac{50}{\pi}}$

$$
v=\pi r^{2} h
$$

$$
500=\pi r^{2} \cdot 10
$$

b $\frac{\sqrt{50}}{\pi}$

$$
\frac{500}{10}=\frac{\pi r^{2} \cdot d 0}{100^{\circ}}
$$

c $\frac{50}{\pi}$
d $\frac{50}{2 \pi}$

$$
50=\pi r^{2}
$$

$$
\begin{aligned}
& \frac{50}{\pi}=\frac{\pi^{\prime} r^{2}}{\pi} \\
& \frac{50}{\pi}=r^{2} \\
& \sqrt{\frac{50}{\pi}}=r
\end{aligned}
$$

2016

20 This diagram shows a greenhouse that is built in the shape of a half-cylinder.

Material to cover the roof costs $\$ 3 / \mathrm{m}^{2}$. The shaded ends will not be covered. Which is closest to the cost of covering the roof?
a $\$ 7540$
b $\$ 12570$
c $\$ 15080$
d $\$ 37700$

21 A cone is pictured below.

Hint:

Use Pythagorean theorem as part of your process.

Which of the following is closest to the surface area of the cone?
a $267 \mathrm{~cm}^{2}$
(b) $283 \mathrm{~cm}^{2}$
c $691 \mathrm{~cm}^{2}$
d $723 \mathrm{~cm}^{2}$

2015

29 The figure pictured below is made up of a cone on top of a cylinder. $\quad V_{\text {cylind }} r=\pi, 2 h$
 $96=\pi r^{2}(4)$

$$
\frac{96}{\pi(4)}=r^{2}
$$

$$
\sqrt{\frac{96}{\pi(4)}}=r
$$

$$
2.764=r 7
$$

The cylinder has a volume of $96 \mathrm{~cm}^{3}$.
What is the volume of the figure?

a $120 \mathrm{~cm}^{3}$ use the radius to find
(b) $128 \mathrm{~cm}^{3}$ the Volume of the cone C $144 \mathrm{~cm}^{3}$ d $192 \mathrm{~cm}^{3}$

2013

25 An open-topped paper drinking cup in the shape of a cone is pictured below.

Which is closest to the amount of paper required to make the cup?

$$
\begin{array}{lll}
\text { a } & 185 \mathrm{~cm}^{2} & \\
\text { b } 167 \mathrm{~cm}^{2} & & \text { Alateral surface } \\
\text { c } 135 \mathrm{~cm}^{2} & & \text { no top) } \\
\text { d } 126 \mathrm{~cm}^{2} & =\pi r s \\
& =\pi(4)(10.8) \\
& & 135,7 \mathrm{~cm}^{2}
\end{array}
$$

2014

27 The container pictured below is made up of a cone and a cylinder. The cone and the cylinder have the same height.

Which of the following is closest to the volume of the container?
a $2261 \mathrm{~cm}^{3}$
(b) $3016 \mathrm{~cm}^{3}$
c $3393 \mathrm{~cm}^{3}$
d $4524 \mathrm{~cm}^{3}$

2013

27 The cylinder and the cone shown below have the same height and radius.

Volume of cylinder $=? \times$ Volume of cone
What number completes this equation?
b 2
C $\frac{1}{2}$
d $\quad \frac{1}{3}$

13 What Height?
Two containers are pictured below. One container is a cone, and the other is a rectangular-based prism.

The cone is completely filled with water, and then the water is poured into the empty prism, without spilling.

Determine the height of the water in the prism.
Show your work.

$$
\begin{aligned}
V_{\text {cone }} & =\frac{\pi r^{2 h}}{3} \\
& =\frac{\pi(6)^{2}(10)}{3} \\
& =\frac{\pi(36)(10)}{3} \\
& =\frac{\pi(360)}{3} \\
V_{\text {cone }} & =377 \mathrm{~cm}^{3}
\end{aligned}
$$

check:

$$
\begin{aligned}
& 377=(72) h \\
& \frac{377}{72}=\frac{72 \mathrm{~h}}{72} \\
& 5.24 \mathrm{~cm}=\mathrm{h}
\end{aligned}
$$

2017 14 Don't Let It Melt!
A model of an ice cream cone made up of a cone and a hemisphere is pictured below.

$$
\begin{aligned}
& A_{\text {lateral surface }}=\pi r s \\
& A=4 \pi r^{2} \\
& =\pi(6)(25) \quad A=4 \pi(6)^{2} \\
& =471.24 \mathrm{~cm}^{2} \quad A=452.39 \\
& A_{T}=471.24+226.19 \\
& A_{T}=697.43 \mathrm{~cm}^{2} \\
& \int \frac{1 / 2 \text { SPHERE }}{A=452.16 \div 2} \\
& A=226.19 \mathrm{~cm}^{2} \\
& \begin{array}{l}
\text { cost }=697.43 \\
\text { cost }=\$ 2.44
\end{array}
\end{aligned}
$$

An ice cream store offers chocolate-coated cones as shown in the diagram below.

$$
\begin{aligned}
& s^{2}=a^{2}+b^{2} \\
& s^{2}=6^{2}+10^{2} \\
& s^{2}=136 \\
& s=\sqrt{136} \\
& s=11.66
\end{aligned}
$$

The cone is open topped, and the entire outside is coated in chocolate.
Determine the area of the surface that is coated in chocolate.
Show your work.

$$
\begin{aligned}
& \text { A lateral surface }=\pi r s \\
&=\pi(6)(11.66) \\
&=219.78 \mathrm{~cm}^{2}
\end{aligned}
$$

* do not calculate the Abase as the top is open.

The figure pictured below is a cone with its top portion removed.

Volume of the cone without the tip

$$
\begin{aligned}
& =201.0619-3.14593 \\
& =197.91597 \mathrm{~cm}^{3}
\end{aligned}
$$

