Chapter 6

Analyse Linear Relations

Chapter 6 Get Ready

Chapter 6 Get Ready
Question 1 Page 294
a)

Time Worked (h)	Earnings (\$)
3	30
5	50
6	60
9	90

b) The graph crosses the vertical axis at the point $(0,0)$. This point shows the earnings, $\$ 0$, after zero hours.

Chapter 6 Get Ready
Question 2 Page 294

Labour (h)	Repair Cost (\$)
1	100
2	140
3	180

a) The graph is shown.
b) From the graph, the repair cost for a $5-\mathrm{h}$ job is $\$ 260$.

c) The graph crosses the vertical axis at the point $(0,60)$. This point shows the repair cost, $\$ 60$, for 0 h . It is Carlo's basic charge to make a house call.

Chapter 6 Get Ready Question 3 Page 295

Answers will vary slightly. Sample answers are shown.
a) The distance travelled after 2.5 min is about 220 m .
b) The distance travelled after 6 min is about 540 m .

Chapter 6 Get Ready
Question 4 Page 295
Answers will vary slightly. Sample answers are shown.
a) It took about 2 h 15 min to travel 200 m .

b) It took about 7 h to travel 600 m .

Chapter 6 Get Ready \quad Question 5 Page 295

Number of Goals	Salary (\$millions)
35	1.2
27	1.0
20	0.8
42	1.6
12	0.5

a) The graph and line of best fit are shown.

b) A player who scores 30 goals should be paid $\$ 1.1$ million. A player who scores 50 goals should be paid $\$ 1.8$ million.
c) A player who is paid $\$ 1.4$ million should score 38 goals. A player who is paid $\$ 2$ million should score 56 goals.

Chapter 6 Get Ready
Question 6 Page 295
a) $m=\frac{\text { rise }}{\text { run }}$

$$
=\frac{3}{2}
$$

The slope is $\frac{3}{2}$.

b) $m=\frac{\text { rise }}{\text { run }}$

$$
\begin{aligned}
& =\frac{-4}{4} \\
& =-1
\end{aligned}
$$

The slope is -1 .

Chapter 6 Get Ready

Time (h)	Distance (km)
0	0
1	60
2	100
3	165
4	205

a) The graph and line of best fit are shown.

Question 7 Page 295

b) Answers will vary slightly. Sample answers are (2, 106), and (4, 209).
c) Use $\left(x_{1}, y_{1}\right)=(2,106)$ and $\left(x_{2}, y_{2}\right)=(4,209)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{209-106}{4-2}$
$=\frac{103}{2}$
$=51.5$
The slope is 51.5 . This means that the average speed of the car is $51.5 \mathrm{~km} / \mathrm{h}$.

Chapter 6 Section 1: The Equation of a Line in Slope y-Intercept Form: $\boldsymbol{y}=\boldsymbol{m} \boldsymbol{x}+\boldsymbol{b}$

Chapter 6 Section $1 \quad$ Question 1 Page 304

a)

Equation	Slope	y-intercept
$y=4 x+1$	4	1
$y=\frac{2}{3} x+3$	$\frac{2}{3}$	3
$y=x-2$	1	-2
$y=-\frac{2}{3} x$	$-\frac{2}{3}$	0
$y=3$	0	3
$y=-x-\frac{1}{2}$	-1	$-\frac{1}{2}$

Question 2 Page 304
a) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{1-(-2)}{1-0}$
$=\frac{3}{1}$
$=3$
The slope is 3 , and the y-intercept is -2 .

b) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{-1-3}{2-0}
$$

$$
=\frac{-4}{2}
$$

$$
=-2
$$

The slope is -2 , and the y-intercept is 3 .

c) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{-1-(-2)}{4-0} \\
& =\frac{1}{4}
\end{aligned}
$$

The slope is $\frac{1}{4}$, and the y-intercept is -2 .

d) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{-2-1}{0-(-4)} \\
& =-\frac{3}{4}
\end{aligned}
$$

The slope is $-\frac{3}{4}$, and the y-intercept is -2 .

Chapter 6 Section 1
 Question 3 Page 304

a) $y=3 x-2$
b) $y=-2 x+3$
c) $y=\frac{1}{4} x-2$
d) $y=-\frac{3}{4} x-2$

Chapter 6 Section 1

Question 4 Page 304
a) $y=2$

The slope is 0 , and the y-intercept is 2 .

b) $x=-3$

The slope is undefined, and there is no y-intercept.

c) $x=4$

The slope is undefined, and there is no y-intercept.

d) $y=0$

The slope is 0 , and the y-intercept is 0 .

Chapter 6 Section 1

Question 5 Page 304
The line in question 4, part d), is the x-axis.

Chapter 6 Section 1

a) $y=\frac{2}{3} x+3$

Question 6 Page 305

b) $y=-\frac{3}{5} x+1$

c) $y=-2 x$

d) $y=\frac{4}{3} x-4$

e) $y=-4$

Chapter 6 Section 1

Question 7 Page 305
a) The slope is 0 , and the y-intercept is -5 .
b) The slope is undefined, and there is no y-intercept.
c) The slope is 0 , and the y-intercept is $\frac{7}{2}$.
d) The slope is undefined, and there is no y-intercept.

Chapter 6 Section 1

Question 8 Page 305
a) The person was at an initial distance of 1 m from the sensor.
b) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{4-1}{6-0} \\
& =\frac{3}{6} \\
& =0.5
\end{aligned}
$$

The person was walking at a speed of $0.5 \mathrm{~m} / \mathrm{s}$.
c) The person was walking away from the sensor. This is because on the graph, the person's distance from the sensor increases as time goes by.

Chapter 6 Section 1

a)

c)

b)

d)

Chapter 6 Section 1

Question 10 Page 306
a) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{6.5-1.5}{5-0} \\
& =\frac{5}{5} \\
& =1
\end{aligned}
$$

The slope is 1 , and the y-intercept is 1.5 .
The slope represents Shannon's walking speed of $1 \mathrm{~m} / \mathrm{s}$ away from
 the sensor. The t-intercept represents Shannon's initial distance of 1.5 m away from the sensor.

The equation is $d=t+1.5$.
b) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{15-0}{5-0} \\
& =\frac{15}{5} \\
& =3
\end{aligned}
$$

The slope is 3 , and the y-intercept is 0 .
The slope shows that the circumference of the trunk is three times its age. The a-intercept shows that when the tree began to grow from a seed, it had circumference zero.

The equation is $C=3 a$.

Chapter 6 Section 1

Question 11 Page 306

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{14-1}{1-0} \\
& =\frac{13}{1} \\
& =13
\end{aligned}
$$

The slope is 13 , and the y-intercept is 1 . The letters are m and a.

Chapter 6 Section 1

Question 12 Page 306
Answers will vary. Sample answers are shown.
Yuri left home at 08:18 on his rollerblades. He travelled the first kilometre to school in 12 minutes, or 0.2 h , at a speed of $\frac{1}{0.2}$, or $5 \mathrm{~km} / \mathrm{h}$. Concerned that he might be late, he increased his speed, travelling the second kilometre in 5 minutes, or $\frac{1}{12} \mathrm{~h}$, at a speed of $\frac{1}{\frac{1}{12}}$, or $12 \mathrm{~km} / \mathrm{h}$.
Yuri arrived at school at 08:35, five minutes late.

Chapter 6 Section 1
 Question 13 Page 307

Answers will vary. A sample answer is shown.
If Yuri left 10 min earlier at $08: 08$, the graph would shift to the left by 10 min . He would have arrived at school at $08: 25$, five minutes early.

Chapter 6 Section $1 \quad$ Question 14 Page 307

Answers will vary. Sample answers are shown.
Biff moves at a constant speed, reaching home in 20 s , at a speed of $\frac{30}{20}$, or $1.5 \mathrm{~m} / \mathrm{s}$. Rocco started 25 m from home, and moved at a constant speed up to 15 m in 14 s , at a speed of $\frac{15}{14}$, or about $1.07 \mathrm{~m} / \mathrm{s}$. He stopped for 2 s , and then ran the remaining 15 m in 4 s , at a speed of $\frac{15}{4}$, or $3.75 \mathrm{~m} / \mathrm{s}$. Both bears reached home at the
 same time, after 20 s .

Chapter 6 Section $1 \quad$ Question 15 Page 307

a) The value of the y-coordinate for any x-intercept is 0 . In the graph shown, the x-intercept is $(3,0)$.
b) $\quad y=3 x-6$
$0=3 x-6$
$0+6=3 x-6+6$
$6=3 x$
$\frac{6}{3}=\frac{3 x}{3}$

$2=x$
The x-intercept is 2 .

$$
\begin{aligned}
y & =\frac{2}{3} x+5 \\
0 & =\frac{2}{3} x+5 \\
0-5 & =\frac{2}{3} x+5-5 \\
-5 & =\frac{2}{3} x \\
3(-5) & =3 \times \frac{2}{3} x \\
-15 & =2 x \\
\frac{-15}{2} & =\frac{2 x}{2} \\
-\frac{15}{2} & =x
\end{aligned}
$$

The x-intercept is $-\frac{15}{2}$.

Chapter 6 Section $1 \quad$ Question 16 Page 307

a) Use the "guess and check" method. The first positive integer that works is 11 .
b) Continue using the "guess and check" method. Other numbers that work are 23, 35, 47, 59, and 71 .
c) The pattern is add 12 to get the next term. You can find other numbers that work by multiplying a whole number by 12 , and adding 11 .

Chapter 6 Section 2 The Equation of a Line in Standard Form: $A x+B y+C=0$

Chapter 6 Section 2

Question 1 Page 312
a) $\quad x+y-3=0$
$x+y-3-x+3=0-x+3$
$y=-x+3$
b) $\quad 2 x+3 y+6=0$ $2 x+3 y+6-2 x-6=0-2 x-6$

$$
3 y=-2 x-6
$$

$$
\frac{3 y}{3}=\frac{-2 x-6}{3}
$$

$$
y=\frac{-2 x}{3}-\frac{6}{3}
$$

$$
y=-\frac{2}{3} x-2
$$

c)

$$
\begin{aligned}
x-4 y+12 & =0 \\
x-4 y+12-x-12 & =0-x-12 \\
-4 y & =-x-12 \\
\frac{-4 y}{-4} & =\frac{-x-12}{-4} \\
y & =\frac{-1 x}{-4}+\frac{-12}{-4} \\
y & =\frac{1}{4} x+3
\end{aligned}
$$

d) $\quad 3 x+2 y-5=0$

$$
3 x+2 y-5-3 x+5=0-3 x+5
$$

$$
2 y=-3 x+5
$$

$$
\frac{2 y}{2}=\frac{-3 x+5}{2}
$$

$$
y=\frac{-3 x}{2}+\frac{5}{2}
$$

$$
y=-\frac{3}{2} x+\frac{5}{2}
$$

Chapter 6 Section 2

a) The slope is -1 , and the y-intercept is 3 .
b) The slope is $-\frac{2}{3}$, and the y-intercept is -2 .
c) The slope is $\frac{1}{4}$, and the y-intercept is 3 .
d) The slope is $-\frac{3}{2}$, and the y-intercept is $\frac{5}{2}$.

Question 2 Page 312

Chapter 6 Section 2

Question 3 Page 312

a) $\quad x+3 y-3=0$
$x+3 y-3-x+3=0-x+3$

$$
\begin{aligned}
3 y & =-x+3 \\
\frac{3 y}{3} & =\frac{-x+3}{3} \\
y & =\frac{-1 x}{3}+\frac{3}{3} \\
y & =-\frac{1}{3} x+1
\end{aligned}
$$

The slope is $-\frac{1}{3}$, and the y-intercept is 1 .
b)

$$
\begin{aligned}
2 x-5 y+8 & =0 \\
2 x-5 y+8-2 x-8 & =0-2 x-8 \\
-5 y & =-2 x-8 \\
\frac{-5 y}{-5} & =\frac{-2 x-8}{-5} \\
y & =\frac{-2 x}{-5}+\frac{-8}{-5} \\
y & =\frac{2}{5} x+\frac{8}{5}
\end{aligned}
$$

The slope is $\frac{2}{5}$, and the y-intercept is $\frac{8}{5}$.

Chapter 6 Section $2 \quad$ Question 4 Page 312

a)

$$
\begin{aligned}
40 n-C+250 & =0 \\
40 n-C+250-40 n-250 & =0-40 n-250 \\
-C & =-40 n-250 \\
\frac{-C}{-1} & =\frac{-40 n-250}{-1} \\
C & =\frac{-40 n}{-1}+\frac{-250}{-1} \\
C & =40 n+250
\end{aligned}
$$

b) The fixed cost is $\$ 250$. The variable cost is $\$ 40$ per person.
c)

d) $C=40(100)+250$

$$
\begin{aligned}
& =4000+250 \\
& =4250
\end{aligned}
$$

The cost for 100 people is $\$ 4250$.
e) This is not a better deal than Celebrations. Celebrations charges $\$ 3750$ for 100 people, whereas Easy Event charges $\$ 4250$.

Chapter 6 Section 2

Question 5 Page 312

$$
\begin{aligned}
C & =40(50)+250 \\
& =2000+250 \\
& =2250
\end{aligned}
$$

The cost for 50 people at Easy Event is $\$ 2250$.

$$
\begin{aligned}
C & =25(50)+1250 \\
& =1250+1250 \\
& =2500
\end{aligned}
$$

If only 50 people attend, then the cost at Celebrations is $\$ 2500$ and the cost at Easy Event is $\$ 2250$. In this case, Easy Event is a better deal. This is because the lower fixed cost at Easy Event offsets the higher variable cost when there are fewer people at a banquet.

Chapter 6 Section 2
 Question 6 Page 313

$$
\begin{aligned}
n-E+15 & =0 \\
n-E+15-n-15 & =0-n-15 \\
-E & =-n-15 \\
\frac{-E}{-1} & =-\frac{n}{-1}-\frac{15}{-1} \\
E & =n+15
\end{aligned}
$$

$$
\begin{aligned}
E & =0+15 \\
& =15
\end{aligned}
$$

$$
\begin{aligned}
E & =5+15 \\
& =20
\end{aligned}
$$

A beginning factory worker earns $\$ 15 / \mathrm{h}$, while a factory worker with 5 years of experience earns \$20/h.

The letters are o and t .

Chapter 6 Section 2
 Question 7 Page 313

a)

$$
\begin{aligned}
9 C-5 F+160 & =0 \\
9 C-5 F+160+5 F-160 & =0+5 F-160 \\
9 C & =5 F-160 \\
\frac{9 C}{9} & =\frac{5 F-160}{9} \\
C & =\frac{5 F}{9}-\frac{160}{9} \\
C & =\frac{5}{9} F-\frac{160}{9}
\end{aligned}
$$

b)

c) The slope is $\frac{5}{9}$ and the C-intercept is $-\frac{160}{9}$. The slope is a multiplication coefficient and the C-intercept is a constant. To change a Fahrenheit temperature to a Celsius temperature, multiply the Fahrenheit temperature by the slope and add the C-intercept.

Chapter 6 Section $2 \quad$ Question 8 Page 313

a)

$$
\begin{aligned}
9 C-5 F+160 & =0 \\
9 C-5 F+160-9 C-160 & =0-9 C-160 \\
-5 F & =-9 C-160 \\
\frac{-5 F}{-5} & =\frac{-9 C-160}{-5} \\
F & =\frac{-9 C}{-5}+\frac{-160}{-5} \\
F & =\frac{9}{5} C+32
\end{aligned}
$$

b)

c) The slope is $\frac{9}{5}$ and the F-intercept is 32 . The slope is a coefficient and the F-intercept is a constant. To change a Celsius temperature to a Fahrenheit temperature, multiply the Celsius temperature by the slope and add the F-intercept.

Chapter 6 Section 2
 Question 9 Page 313

a) The two graphs are similar in that they both have positive slope. They are different in that one has a positive vertical intercept while the other has a negative vertical intercept.
b) The slopes of the two graphs are reciprocals because $\frac{9}{5} \times \frac{5}{9}=1$.

Chapter 6 Section $2 \quad$ Question 10 Page 313

Solutions for Achievement Checks are shown in the Teacher's Resource.

Chapter 6 Section 2

Question 11 Page 314

$$
\begin{aligned}
& \text { a) } \begin{aligned}
y & =-2 x+7 \\
y+2 x-7 & =-2 x+7+2 x-7 \\
2 x+y-7 & =0 \\
A=2, B=1, C & =-7
\end{aligned} \\
& \text { A }
\end{aligned}
$$

b)

$$
\text { b) } \begin{aligned}
& y=x-3 \\
& y-x+3=x-3-x+3 \\
&-x+y+3=0 \\
& \frac{-x+y+3}{-1}=\frac{0}{-1} \\
& \frac{-1 x}{-1}+\frac{y}{-1}+\frac{3}{-1}=0 \\
& x-y-3=0 \\
& A=1, B=-1, C=-3
\end{aligned}
$$

c)

$$
\begin{aligned}
y & =\frac{3}{4} x-2 \\
4 \times y & =4 \times\left(\frac{3}{4} x-2\right) \\
4 y & =4 \times \frac{3}{4} x-4 \times 2 \\
4 y & =3 x-8 \\
4 y-3 x+8 & =3 x-8-3 x+8 \\
-3 x+4 y+8 & =0 \\
\frac{-3 x+4 y+8}{-1} & =\frac{0}{-1} \\
\frac{-3 x}{-1}+\frac{4 y}{-1}+\frac{8}{-1} & =0 \\
3 x-4 y-8 & =0 \\
A=3, B=-4, C & =-8
\end{aligned}
$$

Chapter 6 Section 2
 Question 12 Page 314

f)

Chapter 6 Section 3 Graph a Line Using Intercepts

Chapter 6 Section $3 \quad$ Question 1 Page 319

a) The x-intercept is -2 . The y-intercept is 4 .

b) The x-intercept is -5 . The y-intercept is 1 .

c) The x-intercept is 3 . The y-intercept is 0.5 .

d) The x-intercept does not exist. The y-intercept is 3 .

e) The x-intercept is -2 . The y-intercept is does not exist.

Chapter 6 Section 3

\boldsymbol{x}-intercept \boldsymbol{y}-intercept

2	5
-3	3
1.5	-4
none	6
4	none

Question 2 Page 319

Chapter 6 Section 3

a)

$$
\begin{aligned}
2 x+3 y & =12 \\
2 x+3(0) & =12 \\
2 x & =12 \\
\frac{2 x}{2} & =\frac{12}{2} \\
x & =6 \\
2(0)+3 y & =12 \\
3 y & =12 \\
\frac{3 y}{3} & =\frac{12}{3} \\
y & =4
\end{aligned}
$$

The x-intercept is 6 and the y-intercept is 4 .
b)

$$
\begin{aligned}
3 x+y & =6 \\
3 x+(0) & =6 \\
3 x & =6 \\
\frac{3 x}{3} & =\frac{6}{3} \\
x & =2 \\
3(0)+y & =6 \\
y & =6
\end{aligned}
$$

Question 3 Page 320

The x-intercept is 2 and the y-intercept is 6 .
c)

$$
\begin{aligned}
x-4 y & =4 \\
x-4(0) & =4 \\
x & =4 \\
(0)-4 y & =4 \\
-4 y & =4 \\
\frac{-4 y}{-4} & =\frac{4}{-4} \\
y & =-1
\end{aligned}
$$

The x-intercept is 4 and the y-intercept is -1 .
d)

$$
\begin{aligned}
-5 x+2 y & =10 \\
-5 x+2(0) & =10 \\
-5 x & =10 \\
\frac{-5 x}{-5} & =\frac{10}{-5} \\
x & =-2 \\
-5(0)+2 y & =10 \\
2 y & =10 \\
\frac{2 y}{2} & =\frac{10}{2} \\
y & =5
\end{aligned}
$$

The x-intercept is -2 and the y-intercept is 5 .
e)

$$
\begin{aligned}
4 x & =12 \\
\frac{4 x}{4} & =\frac{12}{4} \\
x & =3
\end{aligned}
$$

The x-intercept is 3 and the y-intercept does not exist.
f)

$$
\begin{aligned}
3 y & =-9 \\
\frac{3 y}{3} & =\frac{-9}{3} \\
y & =-3
\end{aligned}
$$

The x-intercept does not exist and the y-intercept is -3 .

g)

$$
\begin{aligned}
4 x+2 y & =6 \\
4 x+2(0) & =6 \\
4 x & =6 \\
\frac{4 x}{4} & =\frac{6}{4} \\
x & =\frac{3}{2} \\
4(0)+2 y & =6 \\
2 y & =6 \\
\frac{2 y}{2} & =\frac{6}{2} \\
y & =3
\end{aligned}
$$

The x-intercept is $\frac{3}{2}$ and the y-intercept is 3 .

h)

$$
\begin{aligned}
x-3 y & =5 \\
x-3(0) & =5 \\
x & =5 \\
(0)-3 y & =5 \\
-3 y & =5 \\
\frac{-3 y}{-3} & =\frac{5}{-3} \\
y & =-\frac{5}{3}
\end{aligned}
$$

The x-intercept is 5 and the y-intercept is $-\frac{5}{3}$.

Chapter 6 Section 3

a) $\begin{aligned} m & =\frac{\text { rise }}{\text { run }} \\ & =\frac{5}{5} \\ & =1\end{aligned}$

Question 4 Page 320

b) $m=\frac{\text { rise }}{\text { run }}$
$=\frac{3}{2}$

c) The slope is undefined.

d) $m=\frac{\text { rise }}{\text { run }}$
$=\frac{4}{2.5}$
$=\frac{40}{25}$
$=\frac{8}{5}$ or 1.6

Chapter 6 Section 3
 Question 5 Page 320

a) Use the points $(6,0)$ and $(0,5)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{5-0}{0-6} \\
& =-\frac{5}{6}
\end{aligned}
$$

b) Use the points $(3,0)$ and $(0,-4)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-4-0}{0-3} \\
& =\frac{-4}{-3} \\
& =\frac{4}{3}
\end{aligned}
$$

c) Use the points $(-6,0)$ and $(0,3)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{3-0}{0-(-6)} \\
& =\frac{3}{6} \\
& =\frac{1}{2}
\end{aligned}
$$

d) Since there is no x-intercept, the line is horizontal. The slope is 0 .

Chapter 6 Section $3 \quad$ Question $6 \quad$ Page 320

a) The d-intercept, 3.5, represents Carlo's initial distance from the motion sensor because the t-value at the d-intercept is 0 .
b) The t-intercept, 7 , represents the time at which Carlo's distance from the motion sensor is 0 because the d-value at the t-intercept is 0 .
c) Answers will vary. A sample answer is shown.

Start 3.5 m away from the motion sensor and walk towards it at a speed of $0.5 \mathrm{~m} / \mathrm{s}$.

Chapter 6 Section $3 \quad$ Question 7 Page 321

Answers will vary. A sample answer is shown.
The coefficient of x is 1 . This makes it easy to determine the x-intercept.

Chapter 6 Section $3 \quad$ Question 8 Page 321

a)

b) The slope should be negative because the candle's length decreases with time.
c) Refer to the graph in part a).
d) After 3 h , the candle will have burned $3 \times 2.5=7.5 \mathrm{~cm}$. The length left is $15-7.5$, or 7.5 cm .

After 4.5 h , the will have burned $4.5 \times 2.5=11.25 \mathrm{~cm}$. The length left is $15-11.25$, or 3.75 cm .
e) The t-intercept, 6, represents the time it takes for the candle to burn out completely.
f) The graph has no meaning below the t-axis because a candle cannot have negative length.

Chapter 6 Section 3

Question 9 Page 321
a) A line can have no x-intercept. A horizontal line having a y intercept not equal to 0 has no x intercept.
b) It is not possible for a line to have more than one x-intercept. Two distinct lines intersect at one point at most. Considering the x axis as a line, no other line will cross the axis twice.
c) It is not possible for a line to have neither an x-intercept nor a y-intercept. A line can have no x intercept or no y-intercept, but not both. A line that has no x-intercept is parallel to the x-axis and a line that has no y-intercept is parallel to the y-axis. No line can be parallel to both the x-axis and the
 y-axis at the same time.

Chapter 6 Section $3 \quad$ Question 10 Page 321

Answers will vary. Sample answers are shown. Click here to load the sketch.
a)

b) If the x-intercept is increased, the steepness of the slope decreases.

If the x-intercept is decreased, the steepness of the slope increases.
If the y-intercept is increased, the steepness of the slope increases.
If the y-intercept is decreased, the steepness of the slope decreases.
c) The increase in the price of comic books means that Joanne will be able to buy fewer comic books. This means that the linear model will have a lower horizontal intercept. Joanne's buying power will be less.
d) The decrease in the price of novels means that Joanne will be able to buy more novels. This means that the linear model will have a higher vertical intercept. Joanne's buying power will be greater.

Chapter 6 Section $3 \quad$ Question 11 Page 321

a) The computer originally cost $\$ 1000$.
b) The computer no longer has any value after 5 years.
c) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{0-1000}{5-0} \\
& =\frac{-1000}{5} \\
& =-200
\end{aligned}
$$

The slope is -200 . The value of the computer decreases by $\$ 200$ per year.

Chapter 6 Section $3 \quad$ Question 12 Page 322

a)

Time (years)	Computer's Value
0	$\$ 1000.00$
1	$\$ 500.00$
2	$\$ 250.00$
3	$\$ 125.00$
4	$\$ 62.50$
5	$\$ 31.25$

b)

The relation is non-linear. The points form a curve.

Answers will vary for the remaining parts of the question. Sample answers are shown.
c) The computer will be worth less than 10% of its value after 3.5 years. It will never be worth $\$ 0$ because half of a positive number is always another positive number.
d) The t-intercept does not exist. It does not exist because the computer's value will never reach 0 .
e) The computer's value depreciates faster in the system where its value is halved each year. This is because half of $\$ 1000$ is more than $\$ 200$, which is the amount subtracted each year in the other model.

Chapter 6 Section $3 \quad$ Question 13 Page 322

a) This graph has two x-intercepts, at 3 and -3 .
b) This graph has one y-intercept, at 9 .

Answers will vary for the remaining parts of this question. Sample answers are shown.
c) A relation that has two y-intercepts is shown.
d) A relation that has three x-intercepts is shown.

e) A relation that has two x intercepts and two y-intercepts is shown.

Chapter 6 Section $3 \quad$ Question 14 Page 322

Answers will vary. A sample answer is shown.
Locate B by moving 5 units right, 3 units down, and 1 unit out of the page. Locate C by moving 2 units left, 0 units down, and 4 units out of the page. The resulting figure is a triangle.

Chapter 6 Section $3 \quad$ Question 15 Page 322

$$
\begin{aligned}
6 x-2 y-18 & =0 \\
6 x-2 y-18-6 x+18 & =0-6 x+18 \\
-2 y & =-6 x+18 \\
\frac{-2 y}{-2} & =\frac{-6 x+18}{-2} \\
y & =\frac{-6 x}{-2}+\frac{18}{-2} \\
y & =3 x-9 \\
y & =3(x-3)
\end{aligned}
$$

The value of a, in this case 3 , is the x-intercept.

For an equation in the form $y=m(x-a)$, the value of a is the x-intercept of the graph of the line.

Chapter 6 Section 4 Parallel and Perpendicular Lines

Chapter 6 Section 4

a) Each line has a slope of $\frac{1}{4}$. The lines are parallel.

Question 1 Page 328

b) Each line has a slope of 2 . The lines are parallel.

c) The slope of the first graph is -1 , while the slope of the second is 1 . The lines are perpendicular.

d) The slope of each line is $\frac{1}{2}$.

The lines are parallel.

Chapter 6 Section 4

a) The slope of the horizontal line is 0 . The slope of the vertical line is undefined. The lines are perpendicular.

Question 2 Page 328

b) The slope of the horizontal line is 0 . The slope of the angled line is 1 . The lines are neither parallel nor perpendicular.

c) The two lines are vertical. Their slopes are undefined. The lines are parallel.
d) The slope of the ascending line is 1 . The slope of the descending line is -1 . The lines are perpendicular.

Chapter 6 Section 4

Question 3 Page 328
a) The lines are parallel. Their slopes, $\frac{2}{3}$ and $\frac{4}{6}$, are equivalent.
b) The lines are perpendicular. Their slopes, $\frac{3}{4}$ and $-\frac{4}{3}$, are negative reciprocals.
c) The lines are neither parallel nor perpendicular. Their slopes, 2 and -2 , are not equal, and are not negative reciprocals.
d) The lines are perpendicular. Their slopes, 1 and -1 , are negative reciprocals.
e) The lines are parallel. Their slopes, $\frac{1}{5}$ and 0.2 , are equivalent.
f) The lines are perpendicular. Their slopes, $\frac{9}{4}$ and $-\frac{4}{9}$, are negative reciprocals.

Chapter 6 Section $4 \quad$ Question $4 \quad$ Page 328

a) The slope of the line is $\frac{3}{5}$. The slope of a line that is parallel to this line is $\frac{3}{5}$.
b) The slope of the line is -1 . The slope of a line that is parallel to this line is -1 .
c) $\quad 2 x-y+3=0$

$$
2 x-y+3+y=0+y
$$

$$
2 x+3=y
$$

The slope of the line is 2 . The slope of a line that is parallel to this line is 2 .
d) $\quad 4 x+3 y=12$
$4 x+3 y-4 x=12-4 x$
$3 y=-4 x+12$
$\frac{3 y}{3}=\frac{-4 x+12}{3}$
$y=\frac{-4 x}{3}+\frac{12}{3}$
$y=-\frac{4}{3} x+4$
The slope of the line is $-\frac{4}{3}$. The slope of a line that is parallel to this line is $-\frac{4}{3}$.
e) This line is horizontal. The slope of the line is 0 . The slope of a line that is parallel to this line is 0 .
f) This line is vertical. The slope of the line is undefined. The slope of a line that is parallel to this line is undefined.

Chapter 6 Section $4 \quad$ Question 5 Page 328

a) The slope of a line that is perpendicular to the given line is $-\frac{5}{3}$.
b) The slope of a line that is perpendicular to the given line is 1 .
c) The slope of a line that is perpendicular to the given line is $-\frac{1}{2}$.
d) The slope of a line that is perpendicular to the given line is $\frac{3}{4}$.
e) The slope of a line that is perpendicular to the given line is undefined.
f) The slope of a line that is perpendicular to the given line is 0 .

Chapter 6 Section $4 \quad$ Question 6 Page 328

$$
\begin{aligned}
3 x-6 y-5 & =0 \\
3 x-6 y-5-3 x+5 & =0-3 x+5 \\
-6 y & =-3 x+5 \\
\frac{-6 y}{-6} & =\frac{-3 x+5}{-6} \\
y & =\frac{-3 x}{-6}+\frac{5}{-6} \\
y & =\frac{1}{2} x-\frac{5}{6}
\end{aligned}
$$

Answers will vary. Sample answers are shown.
$y=\frac{1}{2} x+1$
$y=\frac{1}{2} x-1$

Chapter 6 Section 4
 Question 7 Page 328

$$
\begin{aligned}
4 x+y-2 & =0 \\
4 x+y-2-4 x+2 & =0-4 x+2 \\
y & =-4 x+2
\end{aligned}
$$

Answers will vary. Sample answers are shown.
$y=\frac{1}{4} x+1$
$y=\frac{1}{4} x-1$

Chapter 6 Section 4
 Question 8 Page 328

a)

b) The triangle appears to be a right triangle with the right angle at B.
c) The slope of $A B$ is 3 . The slope of $A C$ is 1 . The slope of $B C$ is $-\frac{1}{3}$.
d) The slopes of AB and BC are negative reciprocals. This means that AB and BC are perpendicular. Perpendicular lines meet at right angles, so this is a right triangle.

Chapter 6 Section 4

a)

$$
\begin{aligned}
m_{\mathrm{AB}} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{5-1}{-2-1} \\
& =\frac{4}{-3} \\
& =-\frac{4}{3}
\end{aligned}
$$

$$
m_{\mathrm{BC}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{-2-5}{3-(-2)}
$$

$$
=\frac{-7}{5}
$$

$$
=-\frac{7}{5}
$$

$$
m_{\mathrm{AC}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{-2-1}{3-1}
$$

$$
=\frac{-3}{2}
$$

$$
=-\frac{3}{2}
$$

No pair of slopes are negative reciprocals. $\triangle \mathrm{ABC}$ is not a right triangle.

Question 9 Page 329

b)

$$
\begin{aligned}
m_{\mathrm{PQ}} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{2-4}{-2-2} \\
& =\frac{-2}{-4} \\
& =\frac{1}{2} \\
m_{\mathrm{QR}} & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-2-2}{5-(-2)} \\
& =\frac{-4}{7} \\
& =-\frac{4}{7}
\end{aligned}
$$

$$
m_{\mathrm{PR}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}
$$

$$
=\frac{-2-4}{5-2}
$$

$$
=\frac{-6}{3}
$$

$$
=-2
$$

The slope of PQ is $\frac{1}{2}$. The slope of PR is -2 . These are negative reciprocals. $\triangle \mathrm{PQR}$ is a right triangle.

Chapter 6 Section 4
 Question 10 Page 329

a) Some possible answers are $(-2,-2),(-6,3),(3,-1),(8,-5),(-1,-6)$, and $(4,-10)$.
b) There are many other possible answers. All you need is one right angle.

Chapter 6 Section $4 \quad$ Question 11 Page 329

Solutions for Achievement Checks are shown in the Teacher's Resource.

Chapter 6 Section 4
 Question 12 Page 329

a) For the line $2 x+5 y=10$, the x-intercept is 5 , and the y-intercept is 2 .

For the line $2 x+5 y=-10$, the x intercept is -5 , and the y-intercept is -2 .

b) For the line $3 x+4 y=12$, the x-intercept is 4 , and the y-intercept is 3 .

For the line $3 x+4 y=-12$, the x intercept is -4 , and the y-intercept is -3 .
c) Answers will vary.

Chapter 6 Section 4

Question 13 Page 329
a) For the line $3 x+5 y=15$, the x-intercept is 5 , and the y-intercept is 3 .

For the line $5 x-3 y=-15$, the x intercept is -3 , and the y-intercept is 5 .

b) For the line $2 x+7 y=14$, the x-intercept is 7 , and the y-intercept is 2 .

For the line $7 x-2 y=-14$, the x intercept is -2 , and the y-intercept is 7 .
c) Answers will vary.

Chapter 6 Section $4 \quad$ Question 14 Page 329

a)

$$
\begin{aligned}
A x-3 y+15 & =0 \\
A x-3 y+15-A x-15 & =0-A x-15 \\
-3 y & =-A x-15 \\
\frac{-3 y}{-3} & =\frac{-A x-15}{-3} \\
y & =\frac{-A x}{-3}+\frac{-15}{-3} \\
y & =\frac{A}{3} x+5
\end{aligned}
$$

Since A and k are one-digit numbers, A can be $-9,-6,-3,0,3,6$, or 9 . This gives corresponding values for k of $-3,-2,-1,0,1,2$, and 3 . There are 7 pairs of values for A and k for which the two lines are parallel.
b) If the lines are to be perpendicular, $k=-\frac{3}{A}$. A can be $-3,-1,1$, or 3 . This gives corresponding value of k of $1,3,-3$, and -1 . There are 4 pairs of values for A and k for which the two lines are perpendicular.
c) The first line has a y-intercept of 5 . The second line has a y-intercept of 7 . Since the values of A and k affect only the slopes of the lines, there is no pair of values that make the lines coincident.

Chapter 6 Section 5 Find an Equation for a Line Given the Slope and a Point

Chapter 6 Section 5
 Question 1 Page 335

a) $\quad y=m x+b$
$5=1(3)+b$
$5=3+b$
$5-3=3+b-3$
$2=b$
$y=x+2$
b) The y-intercept is given as -4 .
$y=-3 x-4$
c)

$$
\begin{aligned}
y & =m x+b \\
6 & =\frac{2}{3}(-2)+b \\
6 & =-\frac{4}{3}+b \\
6+\frac{4}{3} & =-\frac{4}{3}+b+\frac{4}{3} \\
\frac{18}{3}+\frac{4}{3} & =b \\
\frac{22}{3} & =b \\
y & =\frac{2}{3} x+\frac{22}{3}
\end{aligned}
$$

d)

$$
\begin{aligned}
y & =m x+b \\
-2 & =-\frac{1}{2}(5)+b \\
-2 & =-\frac{5}{2}+b \\
-2+\frac{5}{2} & =-\frac{5}{2}+b+\frac{5}{2} \\
\frac{-4}{2}+\frac{5}{2} & =b \\
\frac{1}{2} & =b \\
y & =-\frac{1}{2} x+\frac{1}{2}
\end{aligned}
$$

e) The y-intercept is given as 0 .
$y=-\frac{4}{5} x$
f)

$$
\begin{aligned}
y & =m x+b \\
\frac{3}{4} & =2\left(\frac{1}{2}\right)+b \\
\frac{3}{4} & =1+b \\
\frac{3}{4}-1 & =1+b-1 \\
\frac{3}{4}-\frac{4}{4} & =b \\
-\frac{1}{4} & =b \\
y & =2 x-\frac{1}{4}
\end{aligned}
$$

Chapter 6 Section 5

Question 2 Page 336
a) The y-intercept is given as 0 .
$y=-3 x$
b)

$$
\begin{aligned}
y & =m x+b \\
-5 & =\frac{2}{3}(4)+b \\
-5 & =\frac{8}{3}+b \\
-5-\frac{8}{3} & =\frac{8}{3}+b-\frac{8}{3} \\
\frac{-15}{3}-\frac{8}{3} & =b \\
-\frac{23}{3} & =b \\
y & =\frac{2}{3} x-\frac{23}{3}
\end{aligned}
$$

c) The slope of the line is 0 . The equation is $y=-6$.
d) The y-intercept is given as 0 .
$y=\frac{5}{2} x$
e) The given line is vertical. The required line is horizontal, with a slope of 0 . The equation is $y=-3$.
f)

$$
\begin{aligned}
y & =m x+b \\
7 & =-\frac{1}{4}(-2)+b \\
7 & =\frac{1}{2}+b \\
7-\frac{1}{2} & =\frac{1}{2}+b-\frac{1}{2} \\
\frac{14}{2}-\frac{1}{2} & =b \\
\frac{13}{2} & =b \\
y & =-\frac{1}{4} x+\frac{13}{2}
\end{aligned}
$$

Chapter 6 Section 5

Question 3 Page 336
a)

$$
\begin{aligned}
C & =m d+b \\
40 & =10(2.5)+b \\
40 & =25+b \\
40-25 & =25+b-25 \\
15 & =b
\end{aligned}
$$

$$
C=10 d+15
$$

b) $C=10 d+15$
$C=10(6.5)+15$
$=65+15$
$=80$
A 6.5 km ride costs $\$ 80$.
c)

d) From the graph, the cost of a 6.5 km ride is $\$ 80$.

Chapter 6 Section $5 \quad$ Question 4 Page 336

a) | Distance (km) | Cost (\$) | First Differences |
| :---: | :---: | :---: |
| 2.5 | 40 | |
| 3.5 | 50 | 10 |
| 4.5 | 60 | 10 |
| 5.5 | 70 | 10 |
| 6.5 | 80 | 10 |

This method uses a table of values to determine the cost of a 6.5 km ride.
b)

$$
\begin{aligned}
C & =10 d+15 \\
100 & =10 d+15 \\
100-15 & =10 d+15-15 \\
85 & =10 d \\
\frac{85}{10} & =\frac{10 d}{10} \\
8.5 & =d
\end{aligned}
$$

From the equation, $\$ 100$ will get you 8.5 km .
From the graph, $\$ 100$ will get you 8.5 km .
Continue the table for two more rows. The table shows that $\$ 100$ will get you 8.5 km .

Distance (km)	Cost (\$)	First Differences
2.5	40	
3.5	50	10
4.5	60	10
5.5	70	10
6.5	80	10
7.5	90	10
8.5	100	10

c) $C=10 d+15$

$$
\begin{aligned}
C & =10(5.8)+15 \\
& =58+15 \\
& =73
\end{aligned}
$$

From the equation, a 5.8 km ride costs $\$ 73$.
From the graph, a 5.8 km ride costs about $\$ 73$.
From the table, you can estimate that a 5.8 km ride costs about $\$ 73$.
d) Answers will vary. Sample answers are shown.

The equation method gives accurate answers, but requires solving. The graph method is easy, but gives less exact answers. The table method is easy, but gives less exact answers.

Chapter 6 Section 5

Question 5 Page 336

$$
\begin{aligned}
2 x-3 y+6 & =0 \\
2 x-3 y+6-2 x-6 & =0-2 x-6 \\
-3 y & =-2 x-6 \\
\frac{-3 y}{-3} & =\frac{-2 x-6}{-3} \\
y & =\frac{-2 x}{-3}+\frac{-6}{-3} \\
y & =\frac{2}{3} x+2
\end{aligned}
$$

The desired slope is $\frac{2}{3}$. The desired y-intercept is -1 . The equation is $y=\frac{2}{3} x-1$.

Chapter 6 Section 5

Question 6 Page 336

$$
\begin{aligned}
4 x-5 y & =20 \\
4 x-5 y-4 x & =20-4 x \\
-5 y & =-4 x+20 \\
\frac{-5 y}{-5} & =\frac{-4 x+20}{-5} \\
y & =\frac{-4 x}{-5}+\frac{20}{-5} \\
y & =\frac{4}{5} x-4
\end{aligned}
$$

The desired slope is $-\frac{5}{4}$. The equation is $y=-\frac{5}{4} x-4$.

Chapter 6 Section 5

Question 7 Page 337
The desired slope is $-\frac{8}{9}$.

$$
\begin{aligned}
y & =m x+b \\
-8 & =-\frac{8}{9}(18)+b \\
-8 & =-16+b \\
-8+16 & =-16+16+b \\
8 & =b \\
y & =-\frac{8}{9} x+8 \\
0 & =-\frac{8}{9} x+8 \\
0-8 & =-\frac{8}{9} x+8-8 \\
-8 & =-\frac{8}{9} x \\
9 \times(-8) & =9 \times\left(-\frac{8}{9} x\right) \\
-72 & =-8 x \\
\frac{-72}{-8} & =\frac{-8 x}{-8} \\
9 & =x
\end{aligned}
$$

The x-intercept is 9 and the y-intercept is 8 . The letters are h and i .

Chapter 6 Section $5 \quad$ Question 8 Page 337

a) The ordered pair $(3,300)$ means that Aki has 300 km left to drive after 3 h .
b) The slope $m=-80$ means that the distance remaining between Aki and Ottawa is decreasing at a rate of $80 \mathrm{~km} / \mathrm{h}$.
c) $\quad d=m t+b$

$$
300=-80(3)+b
$$

$$
300=-240+b
$$

$$
300+240=-240+b+240
$$

$$
540=b
$$

d) $d=-80 t+540$
e)

The d-intercept represents Aki's distance from Ottawa just as he started this trip.
f) $\quad 0=-80 t+540$ $0-540=-80 t+540-540$
$-540=-80 t$
$\frac{-540}{-80}=\frac{-80 t}{-80}$

$$
6.75=t
$$

The trip to Ottawa will take 6.75 h .
g) No. Aki has driven for 3 h at $80 \mathrm{~km} / \mathrm{h}$. So, he has driven 240 km . He still has 300 km to drive. At $80 \mathrm{~km} / \mathrm{h}$, this will take him another $3 \frac{3}{4} \mathrm{~h}$.

Chapter 6 Section 5
 Question 9 Page 337

a) Click here to load the sketch.

b) Answers will vary.

Chapter 6 Section 5
 Question 10 Page 337

a) Click here to load the sketch.

The fixed cost is $\$ 7.00$.
b) $C=2.5 d+7.00$
c) $\quad C=m d+b$

$$
\begin{aligned}
22 & =2.5(6)+b \\
22 & =15+b \\
22-15 & =15+b-15 \\
7 & =b \\
C & =2.5 d+7
\end{aligned}
$$

Chapter 6 Section $5 \quad$ Question 11 Page 337

a)

b) Answers will vary. The answer to part f) would change. Aki has 300 km left to go to Ottawa. At $100 \mathrm{~km} / \mathrm{h}$, the rest of the trip will take $\frac{300}{100}=3 \mathrm{~h}$. The trip will take $3+3=6 \mathrm{~h}$. The answer to part g) will change. Aki has reached the halfway point of his trip at 3 h .
c) Explanations and methods used will vary.

Chapter 6 Section 6 Find an Equation for a Line Given Two Points

Chapter 6 Section 6

a)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{6-3}{5-2} \\
& =\frac{3}{3} \\
& =1 \\
y & =m x+b \\
3 & =1(2)+b \\
3 & =2+b \\
3-2 & =2+b-2 \\
1 & =b
\end{aligned}
$$

The equation is $y=x+1$.
b)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{5-(-1)}{0-4} \\
& =\frac{6}{-4} \\
& =-\frac{3}{2} \\
y & =m x+b \\
-1 & =-\frac{3}{\not 2}\left({ }^{2} 4\right)+b \\
-1 & =-6+b \\
-1+6 & =-6+b+6 \\
5 & =b
\end{aligned}
$$

The equation is $y=-\frac{3}{2} x+5$.
c)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-6-4}{-2-(-3)} \\
& =\frac{-10}{1} \\
& =-10 \\
y & =m x+b \\
4 & =-10(-3)+b \\
4 & =30+b \\
4-30 & =30+b-30 \\
-26 & =b
\end{aligned}
$$

The equation is $y=-10 x-26$.
d)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-5-0}{\frac{7}{2}-\frac{1}{2}} \\
& =\frac{-5}{\frac{6}{2}} \\
& =-\frac{5}{3} \\
y & =m x+b \\
0 & =-\frac{5}{3}\left(\frac{1}{2}\right)+b \\
0 & =-\frac{5}{6}+b \\
0+\frac{5}{6} & =-\frac{5}{6}+b+\frac{5}{6} \\
\frac{5}{6} & =b
\end{aligned}
$$

The equation is $y=-\frac{5}{3} x+\frac{5}{6}$.

Chapter 6 Section 6

Question 2 Page 342
a)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{7-3}{5-1} \\
& =\frac{4}{4} \\
& =1 \\
y & =m x+b \\
3 & =1(1)+b \\
3 & =1+b \\
3-1 & =1+b-1 \\
2 & =b
\end{aligned}
$$

The equation is $y=x+2$.
b)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-2-4}{3-(-6)} \\
& =\frac{-6}{9} \\
& =-\frac{2}{3} \\
y & =m x+b \\
4 & =-\frac{2}{\not p}(-6)+b \\
4 & =4+b \\
4-4 & =4+b-4 \\
0 & =b
\end{aligned}
$$

The equation is $y=-\frac{2}{3} x$.

Chapter 6 Section 6

Question 3 Page 342
a)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{0-(-2)}{4-0} \\
& =\frac{2}{4} \\
& =\frac{1}{2} \\
y & =m x+b \\
-2 & =\frac{1}{2}(0)+b \\
-2 & =b
\end{aligned}
$$

The equation is $y=\frac{1}{2} x-2$.
b)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-5-0}{0-(-5)} \\
& =\frac{-5}{5} \\
& =-1 \\
y & =m x+b \\
-5 & =-1(0)+b \\
-5 & =b
\end{aligned}
$$

The equation is $y=-x-5$.

Chapter 6 Section 6

Question 4 Page 342

a)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{3-3}{5-0} \\
& =\frac{0}{5} \\
& =0
\end{aligned}
$$

Since the slope is 0 , the line is horizontal. The y-intercept is given as 3 . The equation is $y=3$.
b)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-4-6}{-2-(-2)} \\
& =\frac{-10}{0}
\end{aligned}
$$

The slope is undefined.
The line is vertical.

The equation is $x=-2$.

Chapter 6 Section 6

Question 5 Page 342
a) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{28.50-20.50}{9-5} \\
& =\frac{8.00}{4} \\
& =2.00
\end{aligned}
$$

The variable cost is $\$ 2.00$ per game.

$$
\begin{aligned}
C & =m g+b \\
20.50 & =2.00(5)+b \\
20.50 & =10+b \\
20.50-10 & =10+b-10 \\
10.50 & =b
\end{aligned}
$$

The equation is $C=2.00 \mathrm{~g}+10.50$.
c)

d) The C-intercept is 10.50 . This represents the fixed base cost of $\$ 10.50$.
e) Answers will vary slightly. From the graph, the cost of 20 games is about $\$ 50.50$.
f) $C=2.00(20)+10.50$

$$
\begin{aligned}
& =40.00+10.50 \\
& =50.50
\end{aligned}
$$

From the equation, the cost of 20 games is $\$ 50.50$.
g) Answers will vary. Sample answers are shown.

The graph is easy to use, but lacks accuracy. The equation takes longer to use, but gives an exact answer.

Chapter 6 Section $6 \quad$ Question 6 Page 342

a) Fiona is moving away from the sensor because she is farther away from it after 4 s than she was after 2 s .
b) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{4.5-1.5}{4-2} \\
& =\frac{3.0}{2} \\
& =1.5
\end{aligned}
$$

Fiona is walking at $1.5 \mathrm{~m} / \mathrm{s}$.
c) $\quad d=m t+b$

$$
\begin{aligned}
1.5 & =1.5(2)+b \\
1.5 & =3+b \\
1.5-3 & =3+b-3 \\
-1.5 & =b
\end{aligned}
$$

The equation is $d=1.5 t-1.5$.
d) The d-intercept is -1.5 m . Fiona started at 1.5 m behind the motion sensor. Then, she walked towards the sensor, and passed it.

Chapter 6 Section 6 Question 7 Page 343

a) The point $(5,17.25)$ represents Colette's wage of $\$ 17.25 / \mathrm{h}$ with 5 years of experience and the point ($1,14.25$) represents Lee's wage of $\$ 14.25 / \mathrm{h}$ with 1 year of experience.
b)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{17.25-14.25}{5-1} \\
& =\frac{3.00}{4} \\
& =0.75 \\
w & =m n+b \\
14.25 & =0.75(1)+b \\
14.25 & =0.75+b \\
14.25-0.75 & =0.75+b-0.75 \\
13.50 & =b
\end{aligned}
$$

The slope is 0.75 , and the w-intercept is 13.50 . The slope represents the yearly hourly wage increase, and the w-intercept represents the starting hourly wage.
c) The equation is $w=0.75 n+13.50$.
d) $w=0.75(7)+13.50$

$$
\begin{aligned}
& =5.25+13.50 \\
& =18.75
\end{aligned}
$$

Maria's wage is $\$ 18.75$ per hour.
e) $w=0.75(25)+13.50$
$=18.75+13.50$
$=32.25$
A worker who has been with the lab for 25 years should earn $\$ 32.25$ per hour. This may be somewhat high. The store might put a cap on the maximum salary after a number of years. Answers will vary.

Chapter 6 Section 6

Question 8 Page 343
a) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{40-240}{2.5-0}$
$=\frac{-200}{2.5}$
$=-80$
Anil's family is travelling at $80 \mathrm{~km} / \mathrm{h}$.
b) $d=m t+b$
$240=-80(0)+b$
$240=b$
The equation is $d=-80 t+240$.
c) $\quad 0=-80 t+240$
$0+80 t=-80 t+240+80 t$
$80 t=240$
$\frac{80 t}{80}=\frac{240}{80}$
$t=3$
The entire trip takes 3 h . Anil's family will arrive home in another 0.5 h , at 7:30p.m.. They will arrive 15 minutes before the game starts, assuming that their speed remains at $80 \mathrm{~km} / \mathrm{h}$.

Chapter 6 Section 6

a)
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{1-6}{10-0}
$$

$$
=\frac{-5}{10}
$$

$$
=-\frac{1}{2}
$$

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{6-2}{8-0} \\
& =\frac{4}{8} \\
& =\frac{1}{2}
\end{aligned}
$$

$$
\begin{aligned}
d & =m t+b \\
6 & =-\frac{1}{2}(0)+b \\
6 & =b
\end{aligned}
$$

$$
\begin{aligned}
d & =m t+b \\
2 & =\frac{1}{2}(0)+b \\
2 & =b
\end{aligned}
$$

The equation for Lucas is $d=-\frac{1}{2} t+6$. The equation for Myrna is $d=\frac{1}{2} t+2$.
b) $\quad-\frac{1}{2} t+6=\frac{1}{2} t+2$

$$
\begin{aligned}
-\frac{1}{2} t+6+\frac{1}{2} t-2 & =\frac{1}{2} t+2+\frac{1}{2} t-2 \\
4 & =t
\end{aligned}
$$

Lucas and Myrna were the same distance from their sensors after 4 s.

$$
\text { c) } \begin{aligned}
d & =-\frac{1}{2}(4)+6 \\
& =-2+6 \\
& =4
\end{aligned}
$$

This occurred at a distance of 4 m .
d) Answers will vary. A sample answer is shown.

Lucas's distance has to equal Myrna's distance, so set the right sides of the equations equal. Then, solve for t.

Chapter 6 Section 6
 Question 10 Page 343

a)

b) The two lines cross at (4, 4).
c) Answers will vary. A sample answer is shown.

The point of intersection shows that Lucas and Myrna were both 4 m away from the sensor after 4 s . This means that they must have crossed paths at this time and distance from the sensor.

Chapter 6 Section 7 Linear Systems

Chapter 6 Section 7

Question 1 Page 348
a) The point of intersection is $(3,1)$.

b) The point of intersection is $(-2,2)$.

Chapter 6 Section 7

Question 2 Page 349
a) For the equation $y=-x$, the slope is -1 and the y-intercept is 0 .

For the equation $y=x-6$, the slope is 1 and the y-intercept is -6 .

The solution is $(3,-3)$.

$$
\begin{aligned}
\text { L.S. } & =y & \text { R.S. } & =-x \\
& =-3 & & =-(3)
\end{aligned}
$$

L.S. = R.S.

The point $(3,-3)$ satisfies the equation $y=-x$.

$$
\begin{array}{rlrl}
\text { L.S. } & =y & \text { R.S. } & =x-6 \\
= & & =3-3 \\
& & =-3
\end{array}
$$

L.S. $=$ R.S.

The point $(3,-3)$ satisfies the equation $y=x-6$.
b)

$$
\begin{aligned}
x-y & =8 \\
x-y+y-8 & =8+y-8 \\
x-8 & =y
\end{aligned}
$$

The slope is 1 , and the y-intercept is -8 .

$$
\begin{aligned}
x+2 y & =2 \\
x+2 y-x & =2-x \\
2 y & =-x+2 \\
\frac{2 y}{2} & =\frac{-x+2}{2} \\
y & =\frac{-1 x}{2}+\frac{2}{2} \\
y & =-\frac{1}{2} x+1
\end{aligned}
$$

The slope is $-\frac{1}{2}$ and the y-intercept is 1 .

The solution is $(6,-2)$.

$$
\begin{aligned}
\text { L.S. } & =x-y \quad \text { R.S. }=8 \\
= & 6-(-2) \\
= & \\
& \text { L.S. }=\text { R.S. }
\end{aligned}
$$

The point $(6,-2)$ satisfies the equation $x-y=8$.

$$
\begin{array}{rlr}
\text { L.S. } & =x+2 y & \text { R.S. }=2 \\
& =6+2(-2) & \\
& =6-4 & \\
& =2 &
\end{array}
$$

L.S. = R.S.

The point $(6,-2)$ satisfies the equation $x+2 y=2$.
c)

$$
\begin{aligned}
x+2 y & =7 \\
x+2 y-x & =7-x \\
2 y & =-x+7 \\
\frac{2 y}{2} & =\frac{-x+7}{2} \\
y & =\frac{-1 x}{2}+\frac{7}{2} \\
y & =-\frac{1}{2} x+\frac{7}{2}
\end{aligned}
$$

The slope is $-\frac{1}{2}$, and the y-intercept is $\frac{7}{2}$.
$y=4 x-10$

The slope is 4 and the y-intercept is -10 .

The solution is $(3,2)$.

$$
\begin{aligned}
\text { L.S. } & =x+2 y \quad \text { R.S. }=7 \\
& =3+2(2) \\
& =3+4 \\
& =7 \\
& \text { L.S. }=\text { R.S. }
\end{aligned}
$$

The point $(3,2)$ satisfies the equation $x+2 y=7$.

$$
\begin{aligned}
& \text { L.S. }=y \\
& =2 \\
& \text { R.S. }=4 x-10 \\
& =4(3)-10 \\
& =12-10 \\
& =2
\end{aligned}
$$

L.S. = R.S.

The point $(3,2)$ satisfies the equation $y=4 x-10$.
d)

$$
y=-\frac{1}{2} x+\frac{9}{2}
$$

The slope is $-\frac{1}{2}$, and the y-intercept is $\frac{9}{2}$.
$y=3 x-6$
The slope is 3 and the y intercept is -6 .

The solution is (3, 3).

$$
\begin{aligned}
\text { L.S. }=y \quad \text { R.S. } & =-\frac{1}{2} x+\frac{9}{2} \\
=3 & \\
& =-\frac{1}{2}(3)+\frac{9}{2} \\
& =-\frac{3}{2}+\frac{9}{2} \\
& =\frac{6}{2} \\
& =3
\end{aligned}
$$

L.S. $=$ R.S.

The point $(3,3)$ satisfies the equation $y=-\frac{1}{2} x+\frac{9}{2}$.

$$
\begin{array}{rlrl}
\text { L.S. }=y & \text { R.S. } & =3 x-6 \\
=3 & & =3(3)-6 \\
& =9-6 \\
& =3
\end{array}
$$

L.S. = R.S.

The point $(3,3)$ satisfies the equation $y=3 x-6$.

Chapter 6 Section 7

Question 3 Page 349
a) $C=50 d$

$$
\begin{aligned}
& =50(6) \\
& =300
\end{aligned}
$$

$$
\begin{aligned}
C & =40 d+100 \\
& =40(6)+100 \\
& =240+100 \\
& =340
\end{aligned}
$$

Six days of skiing will cost Mike $\$ 300$ under the Standard Rate option, and $\$ 340$ under the Frequent Extremist option.
b) Mike should choose the Standard Rate option. It is $\$ 40$ cheaper.

Chapter 6 Section $7 \quad$ Question 4 Page 349

a) $C=50 d$

$$
\begin{aligned}
& =50(20) \\
& =1000
\end{aligned}
$$

$$
\begin{aligned}
C & =40 d+100 \\
& =40(20)+100 \\
& =800+100 \\
& =900
\end{aligned}
$$

Twenty days of skiing will cost Mike $\$ 1000$ under the Standard Rate option, and $\$ 900$ under the Frequent Extremist option.
b) Mike should choose the Frequent Extremist option. It is $\$ 100$ cheaper.

Chapter 6 Section 7

Refer to the graph. The point of intersection is $(10,500)$. If Mike went skiing 10 times, then the Standard Rate option would cost $\$ 500$, and the Frequent Extremist option would also cost $\$ 500$. In this case, it does not matter which option Mike chooses.

Chapter 6 Section 7

Answers will vary. A sample answer is shown.

This special may affect the couple's decision because the point of intersection is now $(30,1400)$. This means that the cost for 30 guests at each hotel is the same. For fewer than 30 guests, the Waverly Inn is cheaper. For more than 30 guests, the Hotel Niagara is cheaper.

Question 6 Page 349

Chapter 6 Section $7 \quad$ Question 7 Page 349

Debbie's equation is $d=25-10 t$. Ken's equation is $d=20 t$. Use a graphing calculator to plot the equations, and to find the point of intersection.

They will meet 16.7 km from Fort Erie. This will happen 0.83 h after they start, or about 2:50.

Chapter 6 Section $7 \quad$ Question $8 \quad$ Page 349

$$
\begin{aligned}
x-y+2 & =0 \\
x-y+2+y & =0+y \\
x+2 & =y \\
7 x-6 y & =0 \\
7 x-6 y-7 x & =0-7 x \\
-6 y & =-7 x \\
\frac{-6 y}{-6} & =\frac{-7 x}{-6} \\
y & =\frac{7}{6} x
\end{aligned}
$$

Use a graphing calculator to plot the equations, and to find the point of intersection. The point of intersection is $(12,14)$. The letters are l and n.

Chapter 6 Section 7

Question 9 Page 350
a) Tyrion had a head start of 100 m .
b) Cersei runs at $8 \mathrm{~m} / \mathrm{s}$.
c) Tyrion runs at $6 \mathrm{~m} / \mathrm{s}$.
d) Cersei will win if the race is longer than 400 m while Tyrion will win if the race is shorter than 400 m . If the race is 400 m , then they will tie.
e) Answers will vary. A sample answer is shown.

The solution of this linear system is the point (50, 400). This means that if Cersei gives Tyrion a head start of 100 m , she will catch up with him after she has run 400 m and he has run 300 m . This will occur 50 s after they both start running.

Chapter 6 Section $7 \quad$ Question $10 \quad$ Page 350

Answers will vary. Sample answers are shown.
a) If Tyrion's head start is doubled, then his distance-time equation will be $d=6 t+200$ and the new intersection point will be (100 , 800). This means that if the race is less than 800 m , Tyrion will win, and if the race is more than 800 m , Cersei will win. If the race is 800 m exactly, they will tie.
b) If Tyrion's head start is halved, then his distance-time equation will be $d=6 t+50$ and the new intersection point will be $(25,200)$. This means that if the race is less than 200 m , Tyrion will win, and if the race is more than 200 m , Cersei will win. If the race is 200 m
 exactly, they will tie.

Chapter 6 Section 7

Question 11 Page 350

Solutions for the Achievement Checks are shown in the Teacher's Resource.

Chapter 6 Section $7 \quad$ Question 12 Page 351

a)

Year	Numberton's Population	Decimalville's Population
0	25000	15000
1	26000	16500
2	27000	18150
3	28000	19965
4	29000	21962
5	30000	24158
6	31000	26573
7	32000	29231
8	33000	32154
9	34000	35369
10	35000	38906
11	36000	42797
12	37000	47076
13	38000	51784
14	39000	56962
15	40000	62659

b)

c) Numberton's population growth is linear. Decimalville's population growth is non-linear.
d) The solution to this system occurs some time in the eighth year when both populations number between 33000 and 34 000. Up to this time, Numberton's population was greater, but after this time, Decimalville's population will be greater.

Chapter 6 Section 7

Question 13 Page 351

$$
\begin{aligned}
3 x+5 y & =2 \\
3 x+5 y-3 x & =2-3 x \\
5 y & =-3 x+2 \\
\frac{5 y}{5} & =\frac{-3 x+2}{5} \\
y & =\frac{-3 x}{5}+\frac{2}{5} \\
y & =-\frac{3}{5} x+\frac{2}{5} \\
x-3 y & =10 \\
x-3 y-x & =10-x \\
-3 y & =-x+10 \\
\frac{-3 y}{-3} & =\frac{-x+10}{-3} \\
y & =\frac{-1 x}{-3}+\frac{10}{-3} \\
y & =\frac{1}{3} x-\frac{10}{3}
\end{aligned}
$$

The point of intersection is (4, -2). Answer B.

Chapter 6 Section 7

Question 14 Page 351

$$
\begin{aligned}
-2 x+4 y & =14 \\
-2 x+4 y+2 x & =14+2 x \\
4 y & =2 x+14 \\
\frac{4 y}{4} & =\frac{2 x+14}{4} \\
y & =\frac{2 x}{4}+\frac{14}{4} \\
y & =\frac{1}{2} x+\frac{7}{2} \\
5 x-3 y & =-14 \\
5 x-3 y-5 x & =-14-5 x \\
-3 y & =-5 x-14 \\
\frac{-3 y}{-3} & =\frac{-5 x-14}{-3} \\
y & =\frac{-5 x}{-3}+\frac{-14}{-3} \\
y & =\frac{5}{3} x+\frac{14}{3}
\end{aligned}
$$

$\begin{aligned} & \text { F10t F1otz F1ot3 } \\ & \text { V1日 (1/2) } \mathrm{X}+(722) \end{aligned}$
ソ2日 $5 / 3) \times+(14 \%$
$V z=$
$\mathrm{V}_{4}=$
Y5＝

$$
\begin{aligned}
4 x-6 y+12 & =0 \\
4 x-6 y+12-4 x-12 & =0-4 x-12 \\
-6 y & =-4 x-12 \\
\frac{-6 y}{-6} & =\frac{-4 x-12}{-6} \\
y & =\frac{-4 x}{-6}+\frac{-12}{-6} \\
y & =\frac{2}{3} x+2
\end{aligned}
$$

The point of intersection is $(-1,3)$ ．The desired slope is $-\frac{3}{2}$ ．

$$
\begin{aligned}
y & =m x+b \\
3 & =-\frac{3}{2}(-1)+b \\
3 & =\frac{3}{2}+b \\
3-\frac{3}{2} & =\frac{3}{2}+b-\frac{3}{2} \\
\frac{6}{2}-\frac{3}{2} & =b \\
\frac{3}{2} & =b
\end{aligned}
$$

The equation is $y=-\frac{3}{2} x+\frac{3}{2}$.

Chapter 6 Section 7

a)

$$
\begin{aligned}
3 x+5 y & =7 \\
3 x+5 y-3 x & =7-3 x \\
5 y & =-3 x+7 \\
\frac{5 y}{5} & =\frac{-3 x+7}{5} \\
y & =\frac{-3 x}{5}+\frac{7}{5} \\
y & =-\frac{3}{5} x+\frac{7}{5} \\
2 x+4 y-2 x & =6-2 x \\
4 y & =-2 x+6 \\
\frac{4 y}{4} & =\frac{-2 x+6}{4} \\
y & =\frac{-2 x}{4}+\frac{6}{4} \\
y & =-\frac{1}{2} x+\frac{3}{2}
\end{aligned}
$$

Question 15 Page 351

The point of intersection is $(-1,2)$.
b)

$$
\begin{aligned}
x+5 y & =9 \\
x+5 y-x & =9-x \\
5 y & =-x+9 \\
\frac{5 y}{5} & =\frac{-x+9}{5} \\
y & =\frac{-1 x}{5}+\frac{9}{5} \\
y & =-\frac{1}{5} x+\frac{9}{5}
\end{aligned}
$$

$$
\begin{aligned}
5 x+3 y & =1 \\
5 x+3 y-5 x & =1-5 x \\
3 y & =-5 x+1 \\
\frac{3 y}{3} & =\frac{-5 x+1}{3} \\
y & =\frac{-5 x}{3}+\frac{1}{3} \\
y & =-\frac{5}{3} x+\frac{1}{3}
\end{aligned}
$$

The point of intersection is $(-1,2)$.
c) Answers will vary. A sample answer is shown. The point of intersection of several lines whose constants, in standard form, are arithmetic sequences is always $(-1,2)$.

Chapter 6 Review

Chapter 6 Review
Question 1 Page 352
a) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{2-0}{0-(-2)} \\
& =\frac{2}{2} \\
& =1
\end{aligned}
$$

The slope is 1 . The y-intercept is 2 .
b) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{-2-2}{1-(-1)} \\
& =\frac{-4}{2} \\
& =-2
\end{aligned}
$$

The slope is -2 . The y-intercept is 0 .

Chapter 6 Review

Question 2 Page 352

a) The slope is -3 . The y-intercept is 2 .
b) The slope is $\frac{3}{5}$. The y-intercept is -1 .

Chapter 6 Review

a) $y=-2 x+3$

b) $y=\frac{2}{3} x-4$

c) $y=2$

Chapter 6 Review

Question 4 Page 352
a) The slope is 1 . The d-intercept is 2 . The slope shows that the person is moving away from the motion sensor at a speed of $1 \mathrm{~m} / \mathrm{s}$. The d-intercept shows that the person started 2 m away from the sensor.
b) $d=t+2$

Chapter 6 Review

Question 5 Page 352
a) $\quad 2 x+y-6=0$

$$
\begin{aligned}
2 x+y-6-2 x+6 & =0-2 x+6 \\
y & =-2 x+6
\end{aligned}
$$

b)

$$
\begin{aligned}
3 x+5 y+15 & =0 \\
3 x+5 y+15-3 x-15 & =0-3 x-15 \\
5 y & =-3 x-15 \\
\frac{5 y}{5} & =\frac{-3 x-15}{5} \\
y & =\frac{-3 x}{5}-\frac{15}{5} \\
y & =-\frac{3}{5} x-3
\end{aligned}
$$

Chapter 6 Review

Question 6 Page 352
a) $60 n-C+90=0$
$60 n-C+90+C=0+C$
$60 n+90=C$
$C=60 n+90$
b) The slope is 60 and the C-intercept is 90 . The slope represents the dollar amount per hour that the plumber charges. The C-intercept shows that the plumber also charges a base cost of $\$ 90$.
c)

d) $C=60(3)+90$
$=180+90$
$=270$

A 3-h house call costs $\$ 270$.

Chapter 6 Review

a)

$$
\begin{aligned}
3 x-4 y & =12 \\
3 x-4(0) & =12 \\
3 x & =12 \\
\frac{3 x}{3} & =\frac{12}{3} \\
x & =4
\end{aligned}
$$

$$
\begin{aligned}
3(0)-4 y & =12 \\
-4 y & =12 \\
\frac{-4 y}{-4} & =\frac{12}{-4} \\
y & =-3
\end{aligned}
$$

The x-intercept is 4, and the y-intercept is -3 .
b)

$$
\begin{aligned}
6 x-y & =9 \\
6 x-(0) & =9 \\
6 x & =9 \\
\frac{6 x}{6} & =\frac{9}{6} \\
x & =\frac{3}{2}
\end{aligned}
$$

$$
\begin{aligned}
6(0)-y & =9 \\
-y & =9 \\
\frac{-y}{-1} & =\frac{9}{-1} \\
y & =-9
\end{aligned}
$$

Question 7 Page 352

a) Cindy can buy $\frac{18}{3}$, or 6 hamburgers.
b) Cindy can buy $\frac{18}{2}$, or 9 pops.
c) Cindy can buy 2 hamburgers and 6 pops; or 4 hamburgers and 3 pops.

Chapter 6 Review

Question 9 Page 353
The slopes of parallel lines are identical. For example, $y=3 x+1$ and $y=3 x-5$ are parallel lines with a slope 3 .

Chapter 6 Review

Question 10 Page 353
The slopes of perpendicular lines are negative reciprocals. For example, $y=3 x+1$ and $y=-\frac{1}{3} x$ are perpendicular lines.

Chapter 6 Review

Question 11 Page 353

$$
\begin{aligned}
y & =m x+b \\
-4 & =\frac{2}{3}(1)+b \\
-4 & =\frac{2}{3}+b \\
-4-\frac{2}{3} & =\frac{2}{3}+b-\frac{2}{3} \\
-\frac{12}{3}-\frac{2}{3} & =b \\
-\frac{14}{3} & =b \\
y & =\frac{2}{3} x-\frac{14}{3}
\end{aligned}
$$

Chapter 6 Review

Question 12 Page 353

$$
\begin{aligned}
& 3 x-4 y=12 \\
& 3 x-4 y-3 x=12-3 x \\
&-4 y=-3 x+12 \\
& \frac{-4 y}{-4}=\frac{-3 x+12}{-4} \\
& y=\frac{-3 x}{-4}+\frac{12}{-4} \\
& y=\frac{3}{4} x-3 \\
& \text { The desired } \\
& y=m x+b \\
& 0=\frac{3}{44}(\not \boxed{3})+b \\
& 0=\frac{9}{2}+b \\
& 0-\frac{9}{2}=\frac{9}{2}+b-\frac{9}{2} \\
&-\frac{9}{2}=b \\
& y=\frac{3}{4} x-\frac{9}{2}
\end{aligned}
$$

The desired slope is $\frac{3}{4}$.

Chapter 6 Review

Question 13 Page 353
The desired slope is $-\frac{1}{2}$. The y-intercept is 0 .
The equation is $y=-\frac{1}{2} x$.

Chapter 6 Review

Question 14 Page 353

a) $\quad f=m t+b$

$$
88=32(2)+b
$$

$$
88=64+b
$$

$$
88-64=64+b-64
$$

$$
24=b
$$

Set must carry a minimum of 24 L of fuel in his plane at all times.
b) $f=32 t+24$
c) $\quad 160=32 t+24$

$$
160-24=32 t+24-24
$$

$$
136=32 t
$$

$$
\frac{136}{32}=\frac{32 t}{32}
$$

$$
4.25=t
$$

Seth has enough fuel to fly 4 h and 15 min before having to refuel.
d) $\quad f=24 t+24$
$160=24 t+24$
$160-24=24 t+24-24$
$136=24 t$
$\frac{136}{24}=\frac{24 t}{24}$

$$
5 \frac{2}{3}=t
$$

Seth has enough fuel to fly 5 h and 40 min at the new fuel burn rate.

Chapter 6 Review

Question 15 Page 353

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-5-5}{3-(-2)} \\
& =\frac{-10}{5} \\
& =-2 \\
y & =m x+b \\
5 & =-2(-2)+b \\
5 & =4+b \\
5-4 & =4+b-4 \\
1 & =b \\
y & =-2 x+1
\end{aligned}
$$

Chapter 6 Review

a)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{4.0-2.5}{3-1} \\
& =\frac{1.5}{2} \\
& =0.75
\end{aligned}
$$

$$
\begin{aligned}
d & =m t+b \\
2.5 & =0.75(1)+b \\
2.5 & =0.75+b \\
2.5-0.75 & =0.75+b-0.75 \\
1.75 & =b \\
d & =0.75 t+1.75
\end{aligned}
$$

b) The slope, 0.75 , shows that Claudia is walking at a speed of $0.75 \mathrm{~m} / \mathrm{s}$ away from the motion sensor. The d-intercept, 1.75 , shows that she started 1.75 m away from the sensor.
c) $d=0.75(5)+1.75$

$$
\begin{aligned}
& =3.75+1.75 \\
& =5.5
\end{aligned}
$$

Claudia will be 5.5 m from the sensor 5 s after she begins walking.

Chapter 6 Review Question 17 Page 353

The solution is $(-3,-3)$.

$$
\begin{aligned}
\text { L.S. }=-3 \quad \text { R.S. } & =\frac{1}{3}(-3) \\
& =-1
\end{aligned}
$$

L.S. = R.S.

The solution satisfies the equation $y=\frac{1}{3} x-2$.

$$
\begin{aligned}
\text { L.S. }=-3 \quad \text { R.S. } & =-(-3)-6 \\
& =3-6 \\
& =-3
\end{aligned}
$$

L.S. = R.S.

The solution satisfies the equation $y=-x-6$.

Chapter 6 Review Question 18 Page 353

a)

The solution is $(4,160)$. This means that both tutors charge $\$ 160$ for 4 h of tutoring.
b) If a student wants to spend as little money as possible, then for less than 4 h the student should hire Mr. Wellington. The student should hire Ms. Tenshu for more than 4 h of tutoring. The assumption is that both tutors are equally helpful.

Chapter 6 Chapter Test

Chapter 6 Chapter Test Question 1 Page 354

The slope is -3 and the y-intercept is -1 . Answer C.
Chapter 6 Chapter Test
Question 2 Page 354
The x-intercept is -4 .
The y-intercept is -2 .
Answer D.

Chapter 6 Chapter Test
Question 3 Page 354
A line parallel to the given line must have a slope of $\frac{1}{5}$. Answer B.
Chapter 6 Chapter Test Question 4 Page 354
A line perpendicular to the given line must have a slope of $-\frac{2}{3}$. Answer B.

Chapter 6 Chapter Test Question 5 Page 354

From the graph, the point of intersection is $(-1,3)$.
Answer A.

Chapter 6 Chapter Test Question 6 Page 354

a) The person was 5 m from the motion sensor when she began walking.
b) The distance is decreasing. She was walking towards, the sensor.
c) $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
\begin{aligned}
& =\frac{0-5}{5-0} \\
& =\frac{-5}{5} \\
& =-1
\end{aligned}
$$

She was walking at $1 \mathrm{~m} / \mathrm{s}$.
d) The d-intercept is 5 .
$d=-t+5$

Chapter 6 Chapter Test

$$
\begin{aligned}
3 x-y & =6 \\
3(0)-y & =6 \\
-y & =6 \\
y & =-6 \\
3 x-(0) & =6 \\
3 x & =6 \\
\frac{3 x}{3} & =\frac{6}{3} \\
x & =2
\end{aligned}
$$

The x-intercept is 2 , and the y-intercept is -6 .

Question 7 Page 354

Chapter 6 Chapter Test
 Question 8 Page 354

a) $75 n-C+60=0$
$75 n-C+60+C=0+C$
$75 n+60=C$

$$
C=75 n+60
$$

b) The slope is 75 and the C-intercept is 60 . The slope represents the dollar amount per hour that the electrician charges. The C-intercept shows that the electrician also charges a base cost of $\$ 60$.
c)

d) $C=75(2)+60$

$$
\begin{aligned}
& =150+60 \\
& =210
\end{aligned}
$$

The cost of a 2-h house call is $\$ 210$.

Chapter 6 Chapter Test Question 9 Page 355

$$
\begin{aligned}
y & =m x+b \\
-1 & =\frac{2}{3}(4)+b \\
-1 & =\frac{8}{3}+b \\
-1-\frac{8}{3} & =\frac{8}{3}+b-\frac{8}{3} \\
-\frac{3}{3}-\frac{8}{3} & =b \\
-\frac{11}{3} & =b
\end{aligned}
$$

The equation is $y=\frac{2}{3} x-\frac{11}{3}$.

Chapter 6 Chapter Test

Question 10 Page 355

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{8-(-4)}{6-(-3)} \\
& =\frac{12}{9} \\
& =\frac{4}{3} \\
y & =m x+b \\
-4 & =\frac{4}{3}(-3)+b \\
-4 & =-4+b \\
-4+4 & =-4+b+4 \\
0 & =b \\
y & =\frac{4}{3} x
\end{aligned}
$$

Chapter 6 Chapter Test Question 11 Page 355

a) $L=3.8 G$
$L=3.8 G$
$=3.8(0.5) \quad=3.8(0.125)$
$=1.9 \mathrm{~L} \quad=0.475 \mathrm{~L}$
b) $\quad L=3.8 G$
$\frac{L}{3.8}=\frac{3.8 G}{3.8}$

$$
G=\frac{L}{3.8}
$$

c) $G=\frac{L}{3.8}$
$G=\frac{L}{3.8}$
$=\frac{4}{3.8}$
$=\frac{0.25}{3.8}$
$\doteq 1.053$ gallons $\quad \doteq 0.066$ gallons

Chapter 6 Chapter Test

$$
\begin{aligned}
2 x-3 y+6 & =0 \\
2 x-3 y+6-2 x-6 & =0-2 x-6 \\
-3 y & =-2 x-6 \\
\frac{-3 y}{-3} & =\frac{-2 x-6}{-3} \\
y & =\frac{-2 x}{-3}+\frac{-6}{-3} \\
y & =\frac{2}{3} x+2
\end{aligned}
$$

The desired slope is $-\frac{3}{2}$.

$$
\begin{aligned}
3 x+7 y+9 & =0 \\
3 x+7(0)+9 & =0 \\
3 x+9 & =0 \\
3 x+9-9 & =0-9 \\
3 x & =-9 \\
\frac{3 x}{3} & =\frac{-9}{3} \\
x & =-3
\end{aligned}
$$

The desired line passes through $(-3,0)$.

$$
\begin{aligned}
y & =m x+b \\
0 & =-\frac{3}{2}(-3)+b \\
0 & =\frac{9}{2}+b \\
0-\frac{9}{2} & =\frac{9}{2}+b-\frac{9}{2} \\
-\frac{9}{2} & =b
\end{aligned}
$$

The equation is $y=-\frac{3}{2} x-\frac{9}{2}$.

Chapter 6 Chapter Test Question 13 Page 355

a)

b) If you rent fewer than 10 videos in a month, Plan B is cheaper. If you rent more than 10 videos, Plan A is cheaper. For 10 videos both plans cost the same, $\$ 40$.

Chapter 6 Chapter Test Question 14 Page 355

a) Use $\left(x_{1}, y_{1}\right)=(0,0)$ and $\left(x_{2}, y_{2}\right)=(0.25,40)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{40-0}{0.25-0} \\
& =\frac{40}{0.25} \\
& =160
\end{aligned}
$$

Tess's airplane is flying at $160 \mathrm{~km} / \mathrm{h}$.
b) $d=160 t$
c) $360=160 t$

$$
\begin{aligned}
& \frac{360}{160}=\frac{160 t}{160} \\
& 2.25=t
\end{aligned}
$$

Tess will take another 2 h and 15 min to arrive at her cottage, for an arrival time of 2:30.

Chapters 4 to 6 Review

Chapters 4 to 6 Review Question 1 Page 356

a) $\quad x-2=-5 \quad$ The solution is $x=-3$.

$$
\begin{aligned}
x-2+2 & =-5+2 \\
x & =-3
\end{aligned}
$$

b) $\quad \frac{y}{6}=-7 \quad$ The solution is $y=-42$.

$$
\begin{aligned}
6 \times \frac{y}{6} & =6(-7) \\
y & =-42
\end{aligned}
$$

c) $\quad 9+w=13 \quad$ The solution is $w=4$. $9+w-9=13-9$
$w=4$
d) $8 s=32 \quad$ The solution is $s=4$.

$$
\frac{8 s}{8}=\frac{32}{8}
$$

$$
s=4
$$

e) $\begin{aligned} 4 n+9 & =25 \quad \text { The solution is } n=4 . \\ 4 n+9-9 & =25-9\end{aligned}$

$$
4 n=16
$$

$$
\frac{4 n}{4}=\frac{16}{4}
$$

$$
n=4
$$

f) $\begin{aligned} 16-5 r & =-14 \\ 16-5 r-16 & =-14-16 \\ -5 r & =-30 \\ \frac{-5 r}{-5} & =\frac{-30}{-5} \\ r & =6\end{aligned}$

Chapters 4 to 6 Review \quad Question 2 Page 356

a) $\quad 5 x-8=2 x+7$
$5 x-8+8-2 x=2 x+7+8-2 x$

$$
3 x=15
$$

$$
\frac{3 x}{3}=\frac{15}{3}
$$

$$
x=5
$$

L.S. $=5 x-8$
R.S. $=2 x+7$
$=5(5)-8$
$=2(5)+7$
$=25-8$

$$
=10+7
$$

$$
=17
$$

$$
=17
$$

L.S. = R.S.

The solution is $x=5$.

$$
\text { b) } \begin{aligned}
-2 y-7 & =4 y+11 \\
-2 y-7+7-4 y & =4 y+11+7-4 y \\
-6 y & =18 \\
\frac{-6 y}{-6} & =\frac{18}{-6} \\
y & =-3
\end{aligned}
$$

L.S. $=-2 y-7$
R.S. $=4 y+11$
$=-2(-3)-7=4(-3)+11$
$=6-7$
$=-12+11$
$=-1$
$=-1$
L.S. = R.S.

The solution is $y=-3$.

$$
\text { c) } \begin{aligned}
4(3 w+2) & =w-14 \\
12 w+8 & =w-14 \\
12 w+8-8-w & =w-14-8-w \\
11 w & =-22 \\
\frac{11 w}{11} & =\frac{-22}{11} \\
w & =-2
\end{aligned}
$$

L.S. $=4(3 w+2) \quad$ R.S. $=w-14$

$$
=4(3(-2)+2) \quad=-2-14
$$

$$
=4(-6+2)
$$

$$
=-16
$$

$$
=4(-4)
$$

$$
=-16
$$

L.S. $=$ R.S.

The solution is $w=-2$.
d) $3-2(s-1)=13+6 s$ $3-2 s+2=13+6 s$

$$
5-2 s=13+6 s
$$

$$
5-2 s-5-6 s=13+6 s-5-6 s
$$

$$
-8 s=8
$$

$$
\frac{-8 s}{-8}=\frac{8}{-8}
$$

$$
s=-1
$$

$$
\begin{aligned}
\text { L.S. } & =3-2(s-1) & \text { R.S. } & =13+6 s \\
& =3-2(-1-1) & & =13+6(-1) \\
& =3-2(-2) & & =13-6 \\
& =3+4 & & =7 \\
& =7 & &
\end{aligned}
$$

L.S. = R.S.

The solution is $\mathrm{s}=-1$.
e)

$$
\begin{aligned}
& 2(n+9)=-6(2 n-5)+8 \\
& 2 n+18=-12 n+30+8 \\
& 2 n+18=-12 n+38 \\
& 2 n+18-18+12 n=-12 n+38-18+12 n \\
& 14 n=20 \\
& \frac{14 n}{14}=\frac{20}{14} \\
& n=\frac{20}{14} \\
& n=\frac{10}{7} \\
& \text { L.S. }=2(n+9) \quad \text { R.S. }=-6(2 n-5)+8 \\
& =2\left(\frac{10}{7}+9\right)=-6\left(2\left(\frac{10}{7}\right)-5\right)+8 \\
& =2\left(\frac{10}{7}+\frac{63}{7}\right)=-6\left(\frac{20}{7}-\frac{35}{7}\right)+8 \\
& =2\left(\frac{73}{7}\right) \quad=-6\left(\frac{-15}{7}\right)+8 \\
& =\frac{146}{7} \quad=\frac{90}{7}+\frac{56}{7} \\
& =\frac{146}{7}
\end{aligned}
$$

L.S. = R.S.

The solution is $n=\frac{10}{7}$.

$$
\text { f) } \begin{aligned}
5(4 k-3)-5 k & =10+2(3 k+1) \\
20 k-15-5 k & =10+6 k+2 \\
15 k-15 & =12+6 k \\
15 k-15+15-6 k & =12+6 k+15-6 k \\
9 k & =27 \\
\frac{9 k}{9} & =\frac{27}{9} \\
k & =3
\end{aligned}
$$

$$
\begin{array}{rlrl}
\text { L.S. } & =5(4 k-3)-5(k) & \text { R.S. } & =10+2(3 k+1) \\
& =5(4(3)-3)-5(3) & & =10+2(3(3)+1) \\
& =5(12-3)-15 & & =10+2(9+1) \\
& =5(9)-15 & & =10+2(10) \\
& =45-15 & & =30 \\
& =30 &
\end{array}
$$

L.S. = R.S.

The solution is $k=3$.

Chapters 4 to 6 Review \quad Question 3 Page 356

$$
\begin{aligned}
2 x+1+2 x+1+3 x & =4(4) \\
7 x+2 & =16 \\
7 x+2-2 & =16-2 \\
7 x & =14 \\
\frac{7 x}{7} & =\frac{14}{7} \\
x & =2
\end{aligned}
$$

The side lengths of the triangle are $2(2)+1$, or 5 units and $3(2)$, or 6 units.

Chapters 4 to 6 Review
 Question 4 Page 356

a)

b)

c)

d)

Chapters 4 to 6 Review

a) $\quad A=P+I$
a) $\begin{aligned} A & =P+I \\ A-I & =P+I-I\end{aligned}$

$$
P=A-I
$$

b) $d=2 r$
c) $\begin{aligned} v & =u+a t \\ v-u & =u+a t-u\end{aligned}$
c) $\begin{aligned} v & =u+a t \\ v-u & =u+a t-u\end{aligned}$
$v-u=a t$
d)

$$
\begin{aligned}
P & =2(l+w) \\
P & =2 l+2 w \\
P-2 w & =2 l+2 w-2 w \\
P-2 w & =2 l \\
\frac{P-2 w}{2} & =\frac{2 l}{2} \\
l & =\frac{P-2 w}{2} \\
l & =\frac{P}{2}-w
\end{aligned}
$$

$$
\begin{aligned}
\frac{d}{2} & =\frac{2 r}{2} \\
r & =\frac{d}{2}
\end{aligned}
$$

$$
\begin{aligned}
\frac{v-u}{t} & =\frac{a t}{t} \\
a & =\frac{v-u}{t}
\end{aligned}
$$

Question 5 Page 356

Chapters 4 to 6 Review Question 6 Page 356

a) Let w represent the width. The length is $2 w-2$.

$$
\begin{aligned}
2 w-2+2 w-2+w+w & =86 \\
6 w-4 & =86 \\
6 w-4+4 & =86+4 \\
6 w & =90 \\
\frac{6 w}{6} & =\frac{90}{6} \\
w & =15
\end{aligned}
$$

The width is 15 m , and the length is $2(15)-2$, or 28 m .
b) Answers will vary. A sample answer is shown.

Make a table of possible lengths and widths. Calculate the perimeter for each pair. Continue until you have a perimeter of 86 m . Click here to load the spreadsheet.
c) Answers will vary. A sample answer is shown.

The equation gives an exact answer, but requires skill to solve. The table is easy to use, but may not give an exact answer if it is not an integer.

Width	Length	Perimeter
1	0	2
2	2	8
3	4	14
4	6	20
5	8	26
6	10	32
7	12	38
8	14	44
9	16	50
10	18	56
11	20	62
12	22	68
13	24	74
14	26	80
15	28	86

Chapters 4 to 6 Review \quad Question 7 Page 356

a) Natalie is paid $\$ 9$ for each hour that she works.
b) $P=9 t$, where t represents the time, in hours, that Natalie works and P represents the total amount she is paid for this time. The constant of variation represents the dollar amount that Natalie is paid per hour.
c) $P=9(9)$
$=81$
Natalie will earn $\$ 81$ for 9 h worked.

Chapters 4 to 6 Review

a) The fixed cost is $\$ 50$.
b) Use $\left(x_{1}, y_{1}\right)=(0,50)$ and $\left(x_{2}, y_{2}\right)=(400,110)$.

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{110-50}{400-0} \\
& =\frac{60}{400} \\
& =0.15
\end{aligned}
$$

Distance, $\boldsymbol{d}(\mathrm{km})$	Cost, $C(\$)$
0	50
100	65
200	80
300	95
400	110

The variable cost is $\$ 0.15$ times the number of kilometres. This is found by calculating the slope, or rate of change, from the data in the table.
c) $\quad C=0.15 d+50$
d) $C=0.15(750)+50$

$$
\begin{aligned}
& =112.50+50 \\
& =162.50
\end{aligned}
$$

The cost of renting a car for a day and driving 750 km is $\$ 162.50$.

Chapters 4 to 6 Review \quad Question $9 \quad$ Page 357

a) $m_{\mathrm{AB}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
b) $m_{\mathrm{CD}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$=\frac{4-1}{5-1}$
$=\frac{5-8}{7-2}$
$=\frac{3}{4}$

$$
=-\frac{3}{5}
$$

c) $m_{\mathrm{EF}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
d) $m_{\mathrm{GH}}=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{-2-(-2)}{6-2}
$$

$$
=\frac{6-2}{1-(-2)}
$$

$$
=0
$$

$=\frac{4}{3}$

Chapters 4 to 6 Review Question 10 Page 357

a) rate of change $=\frac{\text { change in distance }}{\text { change in time }}$

$$
\begin{aligned}
& =\frac{6}{5} \\
& =1.2
\end{aligned}
$$

The rate of change of the horse's distance is $1.2 \mathrm{~km} / \mathrm{min}$.
b)

c) The rate of change of the horse's distance is the slope of the line. It shows how quickly the horse's distance changes. It represents the average speed: in this case $1.2 \mathrm{~km} / \mathrm{min}$ or $72 \mathrm{~km} / \mathrm{h}$.

Chapters 4 to 6 Review \quad Question 11 Page 357
a)

x	y	First Difference
0	5	
1	7	2
2	9	2
3	11	2
4	13	2

The first differences are constant. The relation is linear.
b)

x	y	First Difference
0	-4	
2	-2	2
4	2	4
6	8	6
8	16	8

The first differences are not constant. The relation is non-linear.

Chapters 4 to 6 Review

Question 12 Page 357
a)

x	y
0	4
5	8
10	12
15	16
20	20

b) Answers will vary. A sample answer is shown.

Multiply any value of x by $\frac{4}{5}$ and add 4 to obtain the corresponding y-value.
c) Use $\left(x_{1}, y_{1}\right)=(0,4)$ and $\left(x_{2}, y_{2}\right)=(20,20)$.
$m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

$$
=\frac{20-4}{20-0}
$$

$$
=\frac{16}{20}
$$

$$
=\frac{4}{5}
$$

$y=m x+b$
$4=\frac{4}{5}(0)+b$
$4=b$
$y=\frac{4}{5} x+4$

Chapters 4 to 6 Review Question 13 Page 357

a)

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{1}{2}
\end{aligned}
$$

The slope is $\frac{1}{2}$, and the y-intercept is -1 .

The equation is $y=\frac{1}{2} x-1$.
b)

$$
\begin{aligned}
m & =\frac{\text { rise }}{\text { run }} \\
& =\frac{-4}{6} \\
& =-\frac{2}{3}
\end{aligned}
$$

The slope is $-\frac{2}{3}$, and the y-intercept is 4 .
The equation is $y=-\frac{2}{3}+4$.

Chapters 4 to 6 Review

Question 14 Page 357

a)

$$
\begin{aligned}
3 x-4 y+8 & =0 \\
3 x-4 y+8-3 x-8 & =0-3 x-8 \\
-4 y & =-3 x-8 \\
\frac{-4 y}{-4} & =\frac{-3 x-8}{-4} \\
y & =\frac{-3 x}{-4}+\frac{-8}{-4} \\
y & =\frac{3}{4} x+2
\end{aligned}
$$

b) The slope is $\frac{3}{4}$, and the y-intercept is 2 .
c)

Chapters 4 to 6 Review

a)

$$
\begin{aligned}
3 x-y & =6 \\
3 x-0 & =6 \\
3 x & =6 \\
\frac{3 x}{3} & =\frac{6}{3} \\
x & =2
\end{aligned}
$$

$$
\begin{aligned}
3(0)-y & =6 \\
-y & =6 \\
y & =-6
\end{aligned}
$$

The x-intercept is 2 , and the y-intercept is -6 .
b)

$$
\begin{aligned}
-2 x+5 y & =15 \\
-2 x+5(0) & =15 \\
-2 x & =15 \\
\frac{-2 x}{-2} & =\frac{15}{-2} \\
x & =-\frac{15}{2}
\end{aligned}
$$

$$
\begin{aligned}
-2(0)+5 y & =15 \\
5 y & =15 \\
\frac{5 y}{5} & =\frac{15}{5} \\
y & =3
\end{aligned}
$$

Question 15 Page 357

Chapters 4 to 6 Review \quad Question 16 Page 357

a) The slopes are negative reciprocals. The lines are perpendicular.
b) The slopes are equal. The lines are parallel.
c) The slopes are neither equal nor negative reciprocals. The lines are neither.
d) The first line is horizontal, while the second is vertical. The lines are perpendicular.

Chapters 4 to 6 Review

a)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{3-2}{6-3} \\
& =\frac{1}{3} \\
y & =m x+b \\
2 & =\frac{1}{3}(3)+b \\
2 & =1+b \\
2-1 & =1+b-1 \\
1 & =b \\
y & =\frac{1}{3} x+1
\end{aligned}
$$

$$
\text { Question } 17 \quad \text { Page } 357
$$

b)

$$
\begin{aligned}
m & =\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \\
& =\frac{-3-3}{1-(-2)} \\
& =\frac{-6}{3} \\
& =-2
\end{aligned}
$$

$$
\begin{aligned}
y & =m x+b \\
3 & =-2(-2)+b \\
3 & =4+b \\
3-4 & =4+b-4 \\
-1 & =b \\
y & =-2 x-1
\end{aligned}
$$

Chapters 4 to 6 Review
 Question 18 Page 357

a)

The solution is $(20,30)$.
b) If you make fewer than 20 downloads per month, then Plan B is cheaper. If you make more than 20 downloads a month, then Plan A is cheaper.

