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Section 12.3: Wave Properties of Classical Particles 
Tutorial 1 Practice, page 634 
1. Given:   p = 1.8 !10"25  kg #m/s; h = 6.63!10"34  J # s  
Required: λ 

Analysis: Use the de Broglie relation, h
p

λ = . 

Solution: 

  

! = h
p

=
6.63"10#34  kg $m 2 /s

1.8 "10#25  kg $ m/s

! = 3.7 "10#9  m

 

Statement: The de Broglie wavelength of the electron is  3.7 !10"9  m , or 3.7 nm. 
2. Given:   m = 1.7 !10"27  kg; v = 3.4 !105  m/s; h = 6.63!10"34  J # s  
Required: λ 
Analysis: The speed of the proton is much less than light speed, so we can use the 

classical momentum p = mv. Thus, the de Broglie relation, h
p

λ = , becomes h
mv

λ = . 

Solution: 

  

! = h
mv

=
6.63"10#34  kg $m 2 /s

(1.7 "10#27  kg )(3.4 "105  m/s )

! = 1.1"10#12  m

 

Statement: The proton’s de Broglie wavelength is 121.1 10  m−× . 
3. Given:   m = 140 g = 1.4 !10–1 kg; v = 140 km/h; h = 6.63!10"34  J # s  
Required: λ 
Analysis: The speed of the proton is much less than light speed, so we can use the 

classical momentum p = mv. Thus, the de Broglie relation, h
p

λ = , becomes h
mv

λ = . 

First, convert kilometres per hour to metres per second. 

 
140 

km
h

! 103  m
1 km

! 1 h
3.6 !103  s

= 3.89 !101 m/s (one extra digit carried)  

Solution: 

  

! = h
mv

= 6.63"10#34  J
(1.40 "10–1 kg)(3.89 "101 m/s)

! = 1.2 "10#34  m

 

Statement: The de Broglie wavelength of the baseball is 341.2 10  m−× . 
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4. The de Broglie wavelength of the baseball is 19 orders of magnitude smaller than the 
diameter of a proton; therefore, we could never expect to see any wave-like behavior of a 
macroscopic object like a baseball. 
 
Research This: Exploring Quantum Computers, page 638 
Answers may vary. Sample answers: 
A. Quantum computers differ fundamentally from digital computers in the basic unit of 
information. For a digital computer, the basic unit is the bit, an element that can be in 
only one of two states, a “0” and a “1”. For a quantum computer, the basic unit is a 
quantum bit or “qubit.” A qubit can be in any superposition of two states, just like the 
electron trapped in a box (Figure 4 on page 636 of the Student Book) can be in a 
superposition of state 1 and state 2. Moreover, reading the state of a qubit is much 
different than reading the state of a bit. The reading of the state destroys the quantum 
superposition.  
B. Several problems presently stand in the way of building practical quantum computers. 
One is the difficulty of making a computer with many qubits. Another problem is the 
fragility of the quantum superposition state; it is relatively easy to disturb the system, so 
that the superposition state gets destroyed. Another difficulty is finding a way to easily 
read the qubits.  
C. A quantum computer’s design should allow it to perform very quickly at some 
computations that are very difficult for digital computers, so some possible applications 
of quantum computing include the factoring of large numbers, database searching, and 
the simulation of quantum mechanical systems. 
 
Section 12.3 Questions, page 639 
1. Given:   m = 9.11!10"31  kg; # = 150 nm = 1.5!10–7  m; h = 6.63!10"34  J $ s  
Required: speed of the electron, v 
Analysis: Notice that the wavelength here is larger than that in the solution to Sample 
Problem 1 of Tutorial 1, and in that case the electron’s speed is much less than that of 
light. A larger wavelength means that the speed is slower, so use the classical momentum 
in the de Broglie relation and solve for v. 

  
! = h

mv
, so v = h

m!
.  

Solution: 

  

v = h
m!

= 6.63"10#34  J $ s
(9.11"10#31  kg)(1.5"10–7  m)

v = 4.9 "103  m/s

 

Statement: The electron’s speed is 4.9 ! 103 m/s, a non-relativistic speed.  
2. Given: mproton/melectron = 1800; λproton = λelectron 
Required: Eproton/Eelectron 
Analysis: Assume that the two particles are non-relativistic (otherwise, we would need to 
know if the energy is the total energy or just the kinetic energy). In addition to using the 
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de Broglie relation, use the classical relation between E and v, as well as that between p 
and v. 

  
!electron =

h
pelectron

  and  !proton =
h

pproton

 

But, as λproton = λelectron, then it follows that pproton = pelectron. The classical kinetic energy 
can be written in terms of the classical momentum mv. 

2
proton proton proton

2
proton proton

proton

2
proton

proton
proton

1
2
( )1
2

1
2

E m v

m v
m

p
E

m

=

=

=

 

The same relation holds for the electron. 
2
electron

electron
electron

1
2
pE
m

=  

Thus,  
2
electron

electron electron
2
protonproton

proton

2
electron protonelectron

2
proton electron proton

1
2
1
2

p
E m

pE
m

p mE
E m p

=

=

 

Solution: 
2
electron protonelectron

2
proton electron proton

proton

electron

electron

proton

1800
1

p mE
E m p

m
m

E
E

=

=

=

 

Statement: When the proton’s wavelength equals that of the electron, then they both 
have the same momentum. And when they have the same momentum and have non-
relativistic speeds, then the ratio of their classical kinetic energies is 1800:1, with the 
electron having the higher energy because it is lighter.  
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3. (a) Given:   m = 1000.0 kg; v = 100.0 km/h; h = 6.63!10"34  J # s  
Required: λ 

Analysis: Use the de Broglie relation, assuming non-relativistic speed: h
mv

λ = . 

First, convert kilometres per hour to metres per second. 

 
100.0 

km
h

! 103 m
1 km

! 1 h
3.6!103 s

= 2.778!101 m/s (one extra digit carried)  

Solution: 

  

! = h
mv

= 6.63"10#34  J $s
(1000.0 kg)(2.778"101 m/s)

! = 2.39"10#38  m

 

Statement: The de Broglie wavelength of the car travelling at 100.0 km/h is 
 2.39!10"38  m .  
(b) Given:   m = 1000.0 kg; v = 10.0!103 km/h = 1.0!104  km/h; h = 6.63!10"34  J #s  
Required: λ 
Analysis: The car’s speed, though fast, is still non-relativistic (~2800 m/s), so we can use 

the same relation as in (a), h
mv

λ = . First, convert kilometres per hour to metres per 

second. 

 
1.0!104  

km
h

! 103 m
1 km

! 1 h
3.6!103 s

= 2.778!103 m/s (one extra digit carried)  

Solution: 

  

! = h
mv

= 6.63"10#34  J
(1000.0 kg)(2.778"103 m/s)

! = 2.39"10#40  m

 

Statement: The de Broglie wavelength of the car travelling at  1.0!104  km/h  is 

 2.39!10"40  m .  
(c) The de Broglie wavelength of the car at rest is undefined. As the speed decreases, the 
wavelength increases, and at zero speed, the wavelength blows up. (This result seems 
impossible, because we always see parked cars as solid objects and not spread out. 
However, consider how small the speed needs to be for the wavelength of the car to 
exceed 1  µm. The observer would have to establish that the speed of the car was less 
than about 6×10–31 m/s. Such a determination would be impossible, so we do not see 
parked cars spread out like a wave.)  
4. In classical physics, particles occupy a definite position in space, and we can calculate 
exactly how a particle’s position changes with time. Moreover, we can determine both 
the particle’s position and the particle’s velocity at each instant of time with arbitrary 
precision. In quantum mechanics, we do not know what happens to the particle between 
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measurements. Moreover, a measurement cannot determine the particle’s position and 
velocity with arbitrary precision. Instead, quantum mechanics gives us the probabilities 
for obtaining various outcomes of the measurement.  
5. Answers may vary. Sample answers: 
(a) An example of experimental evidence for wave-like properties of matter is the 
Davisson–Germer experiment with electrons diffracting from a crystal. Other 
experiments have shown diffraction of larger particles. 
(b) An example of experimental evidence for particle-like properties of electromagnetic 
radiation is the early experiments by Heinrich Hertz on the photoelectric effect. (Other 
experiments include that of the photovoltaic effect (e.g., solar cells)). 
6. I think wave functions are real. Wave functions cannot be observed directly, so one 
might conclude that they are not real. However, we can say the same thing about atoms, 
and yet atoms seem to be quite real; we can touch objects and we can feel the wind. 
Similarly, we can infer the existence of wave functions through their influence on 
measurements. For example, the probability distribution of electrons striking the wall 
behind a pair of slits is a result of the electron’s wave function.  
7. Presently, all interpretations of quantum mechanics are consistent with the same 
observable results that we measure and experience. Yet quantum mechanics describes 
things that we cannot observe directly, such as the wave function. This indeterminacy of 
various aspects of quantum mechanics makes it possible for several views to be 
consistent with what we observe. Thus, different interpretations of quantum mechanics 
exist. 
 I think the Copenhagen interpretation is most likely because I am comfortable 
with the idea that there are things we simply cannot know. I do not like the pilot-wave 
interpretation, as it seems to imply that future events are predetermined. Future events 
might be predetermined, but I am not comfortable with the idea. Similarly, I do not like 
the many-worlds interpretation because it is hard for me to picture the universe 
continually splitting in two. The collapse interpretation is not so objectionable, but I 
prefer the Copenhagen interpretation. 
8. According to the Heisenberg uncertainty principle, one cannot take exact 
measurements of an electron (or any other object) when it is at rest. If the electron is at 
rest, then Δp = 0 and Δx, the uncertainty in the electron’s position, blows up. Thus, we 
could not determine where the electron was.  
9. Willard Boyle earned a PhD in physics from McGill University. He worked at Bell 
Labs in New Jersey, then left for a job providing NASA with technological support for 
the Apollo space program, and then returned to Bell Labs in 1964, where he worked on 
developing electronic devices, including the charge-coupled device. Charge-coupled 
devices (CCDs) are designed around the photoelectric effect and the quantum mechanics 
of semiconductors. Other physical aspects of their operation are the motion of charges 
under an applied voltage, and for CCDs used for imaging, their operation depends on 
optics. They were originally designed to be used in several applications, including use as 
a memory device and shift register, but their most common application is for imaging. 
They were immediately useful in astronomy because, as imaging sensors, they could 
detect far fainter objects than those detected using film. They are now used in nearly all 
digital cameras.  


