Section 9.3: Diffraction and Interference of Water Waves Tutorial 1 Practice, page 461

1. Given: $\lambda = 1.0 \text{ m}; w = 0.5 \text{ m}$

Required: $\frac{\lambda}{w}$

Analysis: Diffraction should be noticeable if $\frac{\lambda}{w} \ge 1$, so solve for $\frac{\lambda}{w}$.

Solution:

 $\frac{\lambda}{w} = \frac{1.0 \text{ m}}{0.5 \text{ m}}$ $\frac{\lambda}{w} = 2$

Statement: Yes, the diffraction should be noticeable because $\frac{\lambda}{w}$ is greater than 1.

2. Given: $\lambda = 630 \text{ nm} = 6.3 \times 10^{-7} \text{ m}$ Required: maximum width *w* for noticeable diffraction

Analysis: Use the condition that $\frac{\lambda}{w} \ge 1$.

Solution:

 $\frac{\lambda}{w} \ge 1$ $\lambda \ge w$ $6.3 \times 10^{-7} \text{ m} \ge w$ Statement: The m

Statement: The maximum slit width for significant diffraction to be produced is 6.3×10^{-7} m.

Mini Investigation: Interference from Two Speakers, page 464

A. Answers may vary. Sample answer: The distances to the two speakers should differ by zero or a whole number of wavelengths to get constructive interference.

B. Answers may vary. Sample answers: The distances to the two speakers should differ by a half-whole number of wavelengths to get destructive interference.

C. Answers may vary. Sample answers: If a sound of known frequency and wavelength is played, students can compare their estimates with the known values.

Tutorial 2 Practice, page 468

1. Given: two-source interference; $\lambda = 2.5$ m **Required:** *d*, smallest path difference for a node

Analysis: Use
$$|P_nS_1 - P_nS_2| = \left(n - \frac{1}{2}\right)\lambda$$
 with $n = 1$.

Solution:
$$|\mathbf{P}_n \mathbf{S}_1 - \mathbf{P}_n \mathbf{S}_2| = \left(n - \frac{1}{2}\right) \lambda$$

= $\left(1 - \frac{1}{2}\right) (2.5 \text{ m})$
 $|\mathbf{P}_1 \mathbf{S}_1 - \mathbf{P}_1 \mathbf{S}_2| = 1.2 \text{ m}$

Statement: The smallest path difference for a node is 1.2 m. **2. (a) Given:** n = 3; $P_3S_1 = 35$ cm; $P_3S_2 = 42$ cm **Required:** λ

Analysis:
$$|P_nS_1 - P_nS_2| = \left(n - \frac{1}{2}\right)\lambda$$

 $\lambda = \frac{|P_nS_1 - P_nS_2|}{n - \frac{1}{2}}$
Solution: $\lambda = \frac{|P_3S_1 - P_3S_2|}{n - \frac{1}{2}}$
 $= \frac{|35 \text{ cm} - 42 \text{ cm}|}{2.5}$
 $\lambda = 2.8 \text{ cm}$
Statement: The wavelength of the waves is 2.8 cm.
(b) Given: $f = 10.5 \text{ Hz}; \lambda = 2.8 \text{ cm}$
Required: v
Analysis: $v = f\lambda$
Solution: $v = f\lambda$

$$=(10.5 \text{ Hz})(2.8 \text{ cm})$$

$$v = 29 \text{ cm/s}$$

Statement: The speed of the waves is 29 cm/s. 3. (a) Given: n = 2; $P_2S_1 = 29.5$ cm; $P_2S_2 = 25.0$ cm; v = 7.5 cm/s Required: λ

Analysis:
$$|\mathbf{P}_{n}\mathbf{S}_{1} - \mathbf{P}_{n}\mathbf{S}_{2}| = \left(n - \frac{1}{2}\right)\lambda$$

$$\lambda = \frac{|\mathbf{P}_{n}\mathbf{S}_{1} - \mathbf{P}_{n}\mathbf{S}_{2}|}{n - \frac{1}{2}}$$

Solution: $\lambda = \frac{|P_2S_1 - P_2S_2|}{n - \frac{1}{2}}$ $= \frac{|29.5 \text{ cm} - 25.0 \text{ cm}|}{1.5}$ $\lambda = 3.0 \text{ cm}$ Statement: The wavelength of the waves is 3.0 cm. (b) Given: $v = 7.5 \text{ cm/s}; \lambda = 3.0 \text{ cm}$ Required: fAnalysis: $v = f\lambda$ $f = \frac{v}{\lambda}$ Solution: $f = \frac{v}{\lambda}$ $f = \frac{25 \text{ Km}}{3.0 \text{ g/m}}$ f = 2.5 Hz

Statement: The frequency at which the sources are vibrating is 2.5 Hz.

Section 9.3 Questions, page 469

1. Diffraction of waves through a slit is maximized when the wavelength is comparable to or somewhat greater than the slit width.

2. Answers may vary. Sample answer: When the waves reach my friend in phase, there is constructive interference and he hears a loud sound. When the phase of one speaker is changed by 180° , the waves reach my friend out of phase and he hears a sound with decreased volume.

3. (a) Given: $\lambda = 6.3 \times 10^{-4}$ m

Required: maximum width *w* for noticeable diffraction

Analysis: Use the condition that $\frac{\lambda}{w} \ge 1$.

Solution:

$$\frac{\lambda}{w} \ge 1$$
$$\lambda \ge w$$

 $6.3 \times 10^{-4} \text{ m} \ge w$

Statement: The maximum slit width for noticeable diffraction is 6.3×10^{-4} m.

(b) Sample answer: If the slit is wider than 6.3×10^{-4} m, there may still be some diffraction. The wider the slit is, the less diffraction will be noticeable.

4. Given: $d = 1.0 \text{ m}; \lambda = 0.25 \text{ m}; n = 1$ **Required:** θ_1

Analysis: $d\sin\theta_n = \left(n - \frac{1}{2}\right)\lambda$ $\sin\theta_n = \frac{\left(n - \frac{1}{2}\right)\lambda}{d}$

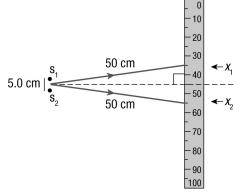
Solution:

$$\sin \theta_n = \frac{\left(n - \frac{1}{2}\right)\lambda}{d}$$
$$\theta_1 = \sin^{-1} \left(\frac{\left(1 - \frac{1}{2}\right)(0.25 \text{ m})}{1.0 \text{ m}}\right)$$
$$\theta_1 = 7.2^\circ$$

Statement: The angle of the first nodal line is 7.2°.

5. Sample answer: For the interference pattern from a two-point source to be stable, the phase between the sources must not change.

6. (a)



(b) Given: d = 5.0 cm; n = 1; $x_1 = 45$ cm-35 cm= 10 cm; L = 50 cm; f = 6.0 Hz Required: λ

Analysis: The distance from the nodal points to the midpoint between the sources is close to the distance *L* between the line joining the sources and the metre stick. Rearrange $x_n = \left(n - \frac{1}{2}\right) \frac{L\lambda}{d}$

to determine the wavelength,
$$\lambda = \frac{x_n d}{\left(n - \frac{1}{2}\right)L}$$
.

Solution:
$$\lambda = \frac{x_n d}{\left(n - \frac{1}{2}\right)L}$$

= $\frac{(10 \text{ cm})(5.0 \text{ cm})}{\left(1 - \frac{1}{2}\right)(50 \text{ cm})}$
 $\lambda = 2 \text{ cm}$

Statement: The wavelength of the waves is 2 cm. (c) Given: $\lambda = 2$ cm; f = 6.0 Hz Required: vAnalysis: $v = f\lambda$ Solution: $v = f\lambda$ = (6.0 Hz)(2 cm) v = 12 cm/s

Statement: The speed of the waves is 12 cm/s.

7. (a) Given: n = 3; $x_3 = 35$ cm; L = 77 cm; d = 6.0 cm; $\theta_3 = 25^{\circ}$;

distance between 5 crests = 4.2 cm

Required: Calculate λ using three different methods.

Analysis: For the first method, use $x_n = \left(n - \frac{1}{2}\right) \frac{L\lambda}{d}$, with n = 3. For the second method, use

 $d\sin\theta_n = \left(n - \frac{1}{2}\right)\lambda$, with n = 3. For the third method, use the measurement between wave crests to determine the wavelength directly.

to determine the wavelength directly.

Solution:

First method:

$$x_n = \left(n - \frac{1}{2}\right) \frac{L\lambda}{d}$$
$$\lambda = \frac{x_3 d}{\left(3 - \frac{1}{2}\right) L}$$
$$= \frac{(35 \text{ cm})(6.0 \text{ cm})}{\left(3 - \frac{1}{2}\right)(77 \text{ cm})}$$
$$= 1.09 \text{ cm} \text{ (one extra digit carried)}$$

 $\lambda = 1.1 \text{ cm}$

Second method:

$$d\sin\theta_n = \left(n - \frac{1}{2}\right)\lambda$$
$$\lambda = \frac{d\sin\theta_n}{n - \frac{1}{2}}$$
$$= \frac{(6.0 \text{ cm})\sin 25^\circ}{3 - \frac{1}{2}}$$

=1.01 cm (one extra digit carried)

 $\lambda = 1.0 \text{ cm}$

Third method:

The distance between five consecutive crests corresponds to four whole wavelengths: $4\lambda = 4.2$ cm

$$\lambda = \frac{4.2 \text{ cm}}{4}$$

=1.05 cm (one extra digit carried)

 $\lambda = 1.0 \text{ cm}$

Each of the three methods of analysis resulted in a wavelength between 1.0 cm and 1.1 cm, with an average of 1.0 cm.

Statement: The wavelength is 1.0 cm.

(b) Answers may vary. Sample answer: The three methods are based on data with two significant digits. The three results differed only by one unit in the last digit. I think that these results are consistent and that no particular measurement stands out as being incorrect.