Section 9.3: Diffraction and Interference of Water Waves Tutorial 1 Practice, page 461

1. Given: $\lambda=1.0 \mathrm{~m} ; w=0.5 \mathrm{~m}$

Required: $\frac{\lambda}{w}$
Analysis: Diffraction should be noticeable if $\frac{\lambda}{w} \geq 1$, so solve for $\frac{\lambda}{w}$.

Solution:

$\frac{\lambda}{w}=\frac{1.0 \mathrm{~m}}{0.5 \mathrm{~m}}$
$\frac{\lambda}{w}=2$
Statement: Yes, the diffraction should be noticeable because $\frac{\lambda}{w}$ is greater than 1 .
2. Given: $\lambda=630 \mathrm{~nm}=6.3 \times 10^{-7} \mathrm{~m}$

Required: maximum width w for noticeable diffraction
Analysis: Use the condition that $\frac{\lambda}{w} \geq 1$.

Solution:

$\frac{\lambda}{w} \geq 1$
$\lambda \geq w$
$6.3 \times 10^{-7} \mathrm{~m} \geq w$
Statement: The maximum slit width for significant diffraction to be produced is $6.3 \times 10^{-7} \mathrm{~m}$.
Mini Investigation: Interference from Two Speakers, page 464
A. Answers may vary. Sample answer: The distances to the two speakers should differ by zero or a whole number of wavelengths to get constructive interference.
B. Answers may vary. Sample answers: The distances to the two speakers should differ by a half-whole number of wavelengths to get destructive interference.
C. Answers may vary. Sample answers: If a sound of known frequency and wavelength is played, students can compare their estimates with the known values.

Tutorial 2 Practice, page 468

1. Given: two-source interference; $\lambda=2.5 \mathrm{~m}$

Required: d, smallest path difference for a node
Analysis: Use $\left|\mathrm{P}_{n} \mathrm{~S}_{1}-\mathrm{P}_{n} \mathrm{~S}_{2}\right|=\left(n-\frac{1}{2}\right) \lambda$ with $n=1$.

Solution: $\left|\mathrm{P}_{n} \mathrm{~S}_{1}-\mathrm{P}_{n} \mathrm{~S}_{2}\right|=\left(n-\frac{1}{2}\right) \lambda$

$$
=\left(1-\frac{1}{2}\right)(2.5 \mathrm{~m})
$$

$$
\left|\mathrm{P}_{1} \mathrm{~S}_{1}-\mathrm{P}_{1} \mathrm{~S}_{2}\right|=1.2 \mathrm{~m}
$$

Statement: The smallest path difference for a node is 1.2 m .
2. (a) Given: $n=3 ; P_{3} S_{1}=35 \mathrm{~cm} ; \mathrm{P}_{3} \mathrm{~S}_{2}=42 \mathrm{~cm}$

Required: λ
Analysis: $\left|\mathrm{P}_{n} \mathrm{~S}_{1}-\mathrm{P}_{n} \mathrm{~S}_{2}\right|=\left(n-\frac{1}{2}\right) \lambda$

$$
\lambda=\frac{\left|\mathrm{P}_{n} \mathrm{~S}_{1}-\mathrm{P}_{n} \mathrm{~S}_{2}\right|}{n-\frac{1}{2}}
$$

Solution: $\lambda=\frac{\left|\mathrm{P}_{3} \mathrm{~S}_{1}-\mathrm{P}_{3} \mathrm{~S}_{2}\right|}{n-\frac{1}{2}}$

$$
=\frac{|35 \mathrm{~cm}-42 \mathrm{~cm}|}{2.5}
$$

$$
\lambda=2.8 \mathrm{~cm}
$$

Statement: The wavelength of the waves is 2.8 cm .
(b) Given: $f=10.5 \mathrm{~Hz} ; \lambda=2.8 \mathrm{~cm}$

Required: v
Analysis: $v=f \lambda$
Solution: $v=f \lambda$

$$
\begin{aligned}
& =(10.5 \mathrm{~Hz})(2.8 \mathrm{~cm}) \\
v & =29 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Statement: The speed of the waves is $29 \mathrm{~cm} / \mathrm{s}$.
3. (a) Given: $n=2 ; \mathrm{P}_{2} \mathrm{~S}_{1}=29.5 \mathrm{~cm} ; \mathrm{P}_{2} \mathrm{~S}_{2}=25.0 \mathrm{~cm} ; v=7.5 \mathrm{~cm} / \mathrm{s}$

Required: λ
Analysis: $\left|\mathrm{P}_{n} \mathrm{~S}_{1}-\mathrm{P}_{n} \mathrm{~S}_{2}\right|=\left(n-\frac{1}{2}\right) \lambda$

$$
\lambda=\frac{\left|\mathrm{P}_{n} \mathrm{~S}_{1}-\mathrm{P}_{n} \mathrm{~S}_{2}\right|}{n-\frac{1}{2}}
$$

Solution: $\lambda=\frac{\left|\mathrm{P}_{2} \mathrm{~S}_{1}-\mathrm{P}_{2} \mathrm{~S}_{2}\right|}{n-\frac{1}{2}}$
$=\frac{|29.5 \mathrm{~cm}-25.0 \mathrm{~cm}|}{1.5}$
$\lambda=3.0 \mathrm{~cm}$
Statement: The wavelength of the waves is 3.0 cm .
(b) Given: $v=7.5 \mathrm{~cm} / \mathrm{s} ; \lambda=3.0 \mathrm{~cm}$

Required: f
Analysis: $v=f \lambda$

$$
f=\frac{\nu}{\lambda}
$$

Solution: $f=\frac{v}{\lambda}$

$$
\begin{aligned}
& =\frac{7.5 \frac{\mathrm{~cm}}{\mathrm{~s}}}{3.0 \mathrm{~cm}} \\
f & =2.5 \mathrm{~Hz}
\end{aligned}
$$

Statement: The frequency at which the sources are vibrating is 2.5 Hz .

Section 9.3 Questions, page 469

1. Diffraction of waves through a slit is maximized when the wavelength is comparable to or somewhat greater than the slit width.
2. Answers may vary. Sample answer: When the waves reach my friend in phase, there is constructive interference and he hears a loud sound. When the phase of one speaker is changed by 180°, the waves reach my friend out of phase and he hears a sound with decreased volume.
3. (a) Given: $\lambda=6.3 \times 10^{-4} \mathrm{~m}$

Required: maximum width w for noticeable diffraction
Analysis: Use the condition that $\frac{\lambda}{w} \geq 1$.
Solution:

$$
\begin{aligned}
& \frac{\lambda}{w} \geq 1 \\
& \lambda \geq w
\end{aligned}
$$

$6.3 \times 10^{-4} \mathrm{~m} \geq w$
Statement: The maximum slit width for noticeable diffraction is $6.3 \times 10^{-4} \mathrm{~m}$.
(b) Sample answer: If the slit is wider than $6.3 \times 10^{-4} \mathrm{~m}$, there may still be some diffraction. The wider the slit is, the less diffraction will be noticeable.
4. Given: $d=1.0 \mathrm{~m} ; \lambda=0.25 \mathrm{~m} ; n=1$

Required: θ_{1}
Analysis: $d \sin \theta_{n}=\left(n-\frac{1}{2}\right) \lambda$

$$
\sin \theta_{n}=\frac{\left(n-\frac{1}{2}\right) \lambda}{d}
$$

Solution:

$$
\begin{aligned}
\sin \theta_{n} & =\frac{\left(n-\frac{1}{2}\right) \lambda}{d} \\
\theta_{1} & =\sin ^{-1}\left(\frac{\left(1-\frac{1}{2}\right)(0.25 \mathrm{~m})}{1.0 \mathrm{~m}}\right) \\
\theta_{1} & =7.2^{\circ}
\end{aligned}
$$

Statement: The angle of the first nodal line is 7.2°.
5. Sample answer: For the interference pattern from a two-point source to be stable, the phase between the sources must not change.
6. (a)

(b) Given: $d=5.0 \mathrm{~cm} ; n=1 ; x_{1}=45 \mathrm{~cm}-35 \mathrm{~cm}=10 \mathrm{~cm} ; L=50 \mathrm{~cm} ; f=6.0 \mathrm{~Hz}$

Required: λ
Analysis: The distance from the nodal points to the midpoint between the sources is close to the distance L between the line joining the sources and the metre stick. Rearrange $x_{n}=\left(n-\frac{1}{2}\right) \frac{L \lambda}{d}$ to determine the wavelength, $\lambda=\frac{x_{n} d}{\left(n-\frac{1}{2}\right) L}$.

Solution: $\lambda=\frac{x_{n} d}{\left(n-\frac{1}{2}\right) L}$

$$
=\frac{(10 \mathrm{~cm})(5.0 \mathrm{~cm})}{\left(1-\frac{1}{2}\right)(50 \mathrm{~cm})}
$$

$$
\lambda=2 \mathrm{~cm}
$$

Statement: The wavelength of the waves is 2 cm .
(c) Given: $\lambda=2 \mathrm{~cm} ; f=6.0 \mathrm{~Hz}$

Required: v
Analysis: $v=f \lambda$
Solution: $v=f \lambda$

$$
\begin{aligned}
& =(6.0 \mathrm{~Hz})(2 \mathrm{~cm}) \\
v & =12 \mathrm{~cm} / \mathrm{s}
\end{aligned}
$$

Statement: The speed of the waves is $12 \mathrm{~cm} / \mathrm{s}$.
7. (a) Given: $n=3 ; x_{3}=35 \mathrm{~cm} ; L=77 \mathrm{~cm} ; d=6.0 \mathrm{~cm} ; \theta_{3}=25^{\circ}$;
distance between 5 crests $=4.2 \mathrm{~cm}$
Required: Calculate λ using three different methods.
Analysis: For the first method, use $x_{n}=\left(n-\frac{1}{2}\right) \frac{L \lambda}{d}$, with $n=3$. For the second method, use $d \sin \theta_{n}=\left(n-\frac{1}{2}\right) \lambda$, with $n=3$. For the third method, use the measurement between wave crests to determine the wavelength directly.

Solution:

First method:

$$
\begin{aligned}
x_{n} & =\left(n-\frac{1}{2}\right) \frac{L \lambda}{d} \\
\lambda & =\frac{x_{3} d}{\left(3-\frac{1}{2}\right) L} \\
& =\frac{(35 \mathrm{~cm})(6.0 \text { sm })}{\left(3-\frac{1}{2}\right)(77 \mathrm{~cm})} \\
& =1.09 \mathrm{~cm} \text { (one extra digit carried) } \\
\lambda & =1.1 \mathrm{~cm}
\end{aligned}
$$

Second method:

$$
\begin{aligned}
d \sin \theta_{n} & =\left(n-\frac{1}{2}\right) \lambda \\
\lambda & =\frac{d \sin \theta_{n}}{n-\frac{1}{2}} \\
& =\frac{(6.0 \mathrm{~cm}) \sin 25^{\circ}}{3-\frac{1}{2}} \\
& =1.01 \mathrm{~cm} \text { (one extra digit carried) } \\
\lambda & =1.0 \mathrm{~cm}
\end{aligned}
$$

Third method:
The distance between five consecutive crests corresponds to four whole wavelengths:
$4 \lambda=4.2 \mathrm{~cm}$

$$
\begin{aligned}
\lambda & =\frac{4.2 \mathrm{~cm}}{4} \\
& =1.05 \mathrm{~cm} \quad \text { (one extra digit carried) } \\
\lambda & =1.0 \mathrm{~cm}
\end{aligned}
$$

Each of the three methods of analysis resulted in a wavelength between 1.0 cm and 1.1 cm , with an average of 1.0 cm .
Statement: The wavelength is 1.0 cm .
(b) Answers may vary. Sample answer: The three methods are based on data with two significant digits. The three results differed only by one unit in the last digit. I think that these results are consistent and that no particular measurement stands out as being incorrect.

