Section 9.1: Properties of Waves and Light

Section 9.1 Questions, page 443

1. The frequency of a wave is determined by the frequency of the wave's source.

2. The speed of a wave is determined by the medium in which it travels.

3. The amplitude of a wave is determined partly by its source and partly by the conditions of the medium in which it travels.

4. The wavelength of a wave is determined by both the wave speed and the frequency. This mathematical relationship is called the universal wave equation.

5. (a) Given: incident ray makes an angle of 10° with the surface

Required: angle of incidence, θ_i

Analysis: The angle of incidence is measured with respect to the normal. Therefore $\theta_i = 90^\circ - 10^\circ$.

Solution: $\theta_i = 90^\circ - 10^\circ$

 $\theta_{\rm i} = 80^{\circ}$

Statement: The angle of incidence is 80°.

(b) The angle of reflection, θ_r , equals the angle of incidence. Therefore $\theta_r = 80^\circ$.

(c)

normal

$$\theta_1 = 80^\circ$$
 $\theta_r = 80^\circ$
 10°

6. Given: sketch of a wave; f = 40 Hz

Required: *v*

Analysis: The wavelength is the length of one complete wave. Measure the length of several complete waves on the sketch, and calculate an average value for λ . Then use the universal wave equation $v = f\lambda$ to determine v.

Solution: The wave first crosses the *x*-axis at approximately 0.1 cm. Three cycles later it crosses the *x*-axis at 4.0 cm.

$$\lambda = \frac{4.0 \text{ cm} - 0.1 \text{ cm}}{3}$$

$$\lambda = 1.3 \text{ cm}$$

$$v = f\lambda$$

$$= \left(40 \frac{1}{s}\right)(1.3 \text{ cm})$$

$$v = 50 \text{ cm/s}$$
Statement: The wave speed is 50 cm/s, or 0
7. Given: $\Delta d = 0.3 \text{ m}; \Delta t = 3.5 \text{ s}; f = 4.6 \text{ Hz}$

Required: λ

Analysis: Use the distance and time information to calculate the wave speed, $v = \frac{\Delta d}{\Delta t}$. Then rearrange the universal wave equation, $v = f\lambda$, to isolate and solve for wavelength.

or 0.5 m/s.

 $v = f\lambda$ $\lambda = \frac{v}{f}$ Solution: $v = \frac{\Delta d}{\Delta t}$ $= \frac{0.3 \text{ m}}{3.5 \text{ s}}$ v = 0.0857 m/s (two extra digits carried) $\lambda = \frac{v}{f}$ $= \frac{0.0857 \text{ m/s}}{4.6 \frac{1}{s}}$

 $\lambda = 2 \times 10^{-2}$ m Statement: The wavelength is 2×10^{-2} m. 8. Given: T = 0.05 s Required: f

Analysis: Frequency is the inverse of period, $f = \frac{1}{T}$.

Solution: $f = \frac{1}{T}$ = $\frac{1}{0.05 \text{ s}}$ f = 20 Hz

Statement: The frequency is 20 Hz.

9. Given: $v = 3.0 \times 10^8$ m/s; $f = 5.0 \times 10^{14}$ Hz

Required: λ

Analysis: Rearrange the universal wave equation, $v = f\lambda$, to isolate and solve for wavelength. $v = f\lambda$

$$\lambda = \frac{v}{f}$$

Solution: $\lambda = \frac{v}{f}$ = $\frac{3.0 \times 10^8 \text{ m/s}}{5.0 \times 10^{14} \frac{1}{s}}$

$$\lambda = 6.0 \times 10^{-7} \text{ m}$$

Statement: The wavelength of the light is 6.0×10^{-7} m.

10. Given: $v = 3.0 \times 10^8$ m/s; $\lambda = 750$ nm $= 7.5 \times 10^{-9}$ m **Required:** *f* Analysis: Rearrange the universal wave equation, $v = f\lambda$, to isolate and solve for frequency. $v = f\lambda$

$$f = \frac{v}{\lambda}$$

Solution: $f = \frac{v}{\lambda}$ $=\frac{3.0\times10^8 \text{ m/s}}{7.5\times10^{-7} \text{ m}}$ $f = 4.0 \times 10^{14} \text{ Hz}$

Statement: The frequency of the red light waves is 4.0×10^{14} Hz. **11. Given:** $c = 3.0 \times 10^8$ m/s; $f = 6.0 \times 10^{14}$ Hz

Required: λ

Analysis: Rearrange the universal wave equation, $v = f\lambda$, to isolate and solve for wavelength. $v = f\lambda$

$$\lambda = \frac{v}{f}$$

Solution: $\lambda = \frac{v}{f}$ $=\frac{3.0\times10^8 \text{ m/s}}{6.0\times10^{14} \frac{1}{\text{s}}}$ $\lambda = 5.0 \times 10^{-7} \text{ m}$

Statement: The wavelength of the violet light is 5.0×10^{-7} m.

12. Given: distance to mirror = 2.5 m;

distance between source and reflected ray at source wall = 1.2 m

Required: θ_i

Analysis: $\theta_i = \theta_r$; sketch the situation. The normal at the point of incidence divides the triangle into two congruent right triangles. Use the tangent ratio to determine θ_i .

Solution: $\theta_i = \tan^{-1} \left(\frac{0.6 \text{ m}}{2.5 \text{ m}} \right)$ $\theta_i = 13^\circ$

Statement: The angle of incidence is 13°.

13. Given: $v = 1.5 \times 10^3$ m/s; $f = 4.4 \times 10^2$ Hz

Required: λ

Analysis: Rearrange the universal wave equation, $v = f\lambda$, to isolate and solve for wavelength. $v = f\lambda$

$$\lambda = \frac{v}{f}$$

Solution: $\lambda = \frac{v}{f}$ = $\frac{1.5 \times 10^3 \text{ m/s}}{4.4 \times 10^2 \frac{1}{s}}$

 $\lambda = 3.4 \text{ m}$

Statement: The wavelength of this frequency of sound in water is 3.4 m.

14. Given: $v = 20.0 \text{ m/s}; \lambda = 2.0 \text{ m}$

Required: *f*

Analysis: Rearrange the universal wave equation, $v = f\lambda$, to isolate and solve for frequency. $v = f\lambda$

$$f = \frac{v}{\lambda}$$

Solution: $f = \frac{v}{\lambda}$ = $\frac{20.0 \text{ m/s}}{2.0 \text{ m}}$

$$f = 10 \text{ Hz}$$

Statement: The frequency of the wave is 10 Hz. 15. Given: $f = 3.1 \text{ kHz} = 3.1 \times 10^3 \text{ Hz}$; $\lambda = 0.13 \text{ m}$ Required: vAnalysis: $v = f\lambda$ Solution: $v = f\lambda$ $= \left(3.1 \times 10^3 \frac{1}{\text{s}}\right)(0.13 \text{ m})$ $v = 4.0 \times 10^2 \text{ m/s}$ Statement: The speed of the wave is $4.0 \times 10^2 \text{ m/s}$. 16. Given: $f = 7.9 \times 10^{14} \text{ Hz}$; $v = 3.0 \times 10^8 \text{ m/s}$

Required: λ

Analysis: Rearrange the universal wave equation, $v = f\lambda$, to isolate and solve for wavelength. $v = f\lambda$

 $\lambda = \frac{v}{f}$

Solution:
$$\lambda = \frac{v}{f}$$

= $\frac{3.0 \times 10^8 \text{ m/g}}{7.9 \times 10^{14} \frac{1}{g}}$
 $\lambda = 3.8 \times 10^{-7} \text{ m}$

Statement: The wavelength of the radiation is 3.8×10^{-7} m. 17. Given: f = 310 MHz = 3.1×10^{8} Hz; $v = 3.0 \times 10^{8}$ m/s Required: λ

Analysis: Rearrange the universal wave equation, $v = f\lambda$, to isolate and solve for wavelength. $v = f\lambda$

$$\lambda = \frac{v}{f}$$

Solution: $\lambda = \frac{v}{f}$ = $\frac{3.0 \times 10^8 \text{ m/s}}{3.1 \times 10^8 \text{ Hz}}$ $\lambda = 0.97 \text{ m}$

Statement: The wavelength of the microwaves is 0.97 m.

18. Sample answer: Mirrors can reflect images because they have a smooth reflecting surface. When several incident light rays strike the mirror, they are reflected in the same direction, which creates a clear image to an observer. This is called specular reflection.

19. Answers may vary. Sample answers:

Method 1: Using proportional reasoning. Frequency and wavelength are related by the universal wave equation $v = f\lambda$. For fixed wave speed, wavelength is inversely proportional to frequency. If one frequency is a factor of three larger than another, its corresponding wavelength is one-third of the other wavelength.

Method 2: Using algebra. $v = f_1 \lambda_1$ and $v = f_2 \lambda_2$; $f_2 = 3f_1$. Set the two values for v equal to each other.

$$f_2 \lambda_2 = f_1 \lambda_1$$
$$\frac{\lambda_2}{\lambda_1} = \frac{f_1}{f_2}$$
$$= \frac{f_1}{3f_1}$$
$$\frac{\lambda_2}{\lambda_1} = \frac{1}{3}$$
$$\lambda_2 = \frac{\lambda_1}{3}$$

The ratio of the second wavelength to the first wavelength is 3 : 1.

20. Given: $f_1 = 0.13$ Hz; $\lambda_1 = 0.56$ m; $f_2 = 0.45$ Hz

Required: λ_2

Analysis: Use the universal wave equation, $v = f\lambda$, to calculate the wave speed. Then use the wave speed and f_2 to determine λ_2 .

Solution:
$$v = f\lambda$$

 $= (0.83 \text{ Hz})(0.56 \text{ m})$
 $v = 0.4648 \text{ m/s} \text{ (two extra digits carried)}$
 $\lambda_2 = \frac{v}{f_2}$
 $= \frac{0.4648 \text{ m/s}}{0.45 \frac{1}{s}}$
 $\lambda_2 = 1.0 \text{ m}$

Statement: When the frequency is 0.45 Hz, the new wavelength is 1.0 m.

21. (a) Sample answer: A flat mirror causes *specular* reflection because its surface is smooth and regular and reflects the rays of a parallel beam of light in one direction.

(b) Sample answer: A piece of notebook paper causes *diffuse* reflection because the paper fibres have many orientations and reflect the rays of a parallel beam of light in many different directions.

(c) Sample answer: The surface of a puddle on a calm day causes *specular* reflection because it is smooth and regular and reflects the rays of a parallel beam of light in one direction.

(d) Sample answer: The surface of a lake on a windy day causes *diffuse* reflection because the rough waves reflect the rays of a parallel beam of light in many directions.