Section 8.2: Magnetic Force on Moving Charges
 Tutorial 1 Practice, page 390

1. (a) Given: $q=1.60 \times 10^{-19} \mathrm{C} ; v=9.4 \times 10^{4} \mathrm{~m} / \mathrm{s} ; B=1.8 \mathrm{~T} ; \theta=90^{\circ}$

Required: F_{M}
Analysis: $F_{\mathrm{M}}=q \nu B \sin \theta$; by the right-hand rule, the direction of the electric force is south.
Solution: $F_{\mathrm{M}}=q v B \sin \theta$

$$
\begin{aligned}
& =\left(1.60 \times 10^{-19} \ell\right)\left(9.4 \times 10^{4} \frac{\mathrm{~m}}{\mathrm{~s}}\right)\left(1.8 \frac{\mathrm{~kg}}{\varnothing \subset \cdot \mathrm{~s}}\right) \sin 90^{\circ} \\
& =2.707 \times 10^{-14} \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2} \\
& =2.707 \times 10^{-14} \mathrm{~N}(\text { two extra digits carried }) \\
F_{\mathrm{M}} & =2.7 \times 10^{-14} \mathrm{~N}
\end{aligned}
$$

Statement: The magnetic force on the proton is $2.7 \times 10^{-14} \mathrm{~N}[\mathrm{~S}]$.
(b) Given: $m=1.67 \times 10^{-27} \mathrm{~kg} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Required: F_{g}
Analysis: $F_{\mathrm{g}}=m g$
Solution: $F_{g}=m g$

$$
\begin{aligned}
& =\left(1.67 \times 10^{-27} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =1.637 \times 10^{-26} \mathrm{~N}(\text { two extra digits carried }) \\
F_{\mathrm{g}} & =1.6 \times 10^{-26} \mathrm{~N}
\end{aligned}
$$

Statement: The gravitational force on the proton is $1.6 \times 10^{-26} \mathrm{~N}$.
(c) Determine the ratio of the two forces on the proton:
$\frac{F_{\mathrm{g}}}{F_{\mathrm{M}}}=\frac{1.637 \times 10^{-26} \mathrm{X}}{2.707 \times 10^{-14} \mathrm{X}}$
$\frac{F_{\mathrm{g}}}{F_{\mathrm{M}}}=\frac{6.0 \times 10^{-13}}{1}$
The gravitational force on the proton is 6.0×10^{-13} times the magnetic force on the proton.
2. Given: $q=-1.60 \times 10^{-19} \mathrm{C} ; v=3.5 \times 10^{5} \mathrm{~m} / \mathrm{s} ; F_{\mathrm{M}}=7.5 \times 10^{-14} \mathrm{~N} ; \theta=90^{\circ}$

Required: B
Analysis: by the right-hand rule, the direction of the electric field is into the page;
$F_{\mathrm{M}}=q v B \sin \theta$

$$
B=\frac{F_{\mathrm{M}}}{q v \sin \theta}
$$

Solution: $B=\frac{F_{\mathrm{M}}}{q v \sin \theta}$

$$
=\frac{\left(7.5 \times 10^{-14} \mathrm{~kg} \cdot \frac{\mathrm{mY}}{\mathrm{~s}^{z}}\right)}{\left(-1.60 \times 10^{-19} \mathrm{C}\right)\left(3.5 \times 10^{5} \frac{\not \mathrm{~m}}{8}\right) \sin 90^{\circ}}
$$

$$
B=1.3 \mathrm{~T}
$$

Statement: The magnitude of the electric field is 1.3 T and it is directed into the page.
3. (a) Given: $q=1.60 \times 10^{-19} \mathrm{C} ; v=2.24 \times 10^{8} \mathrm{~m} / \mathrm{s} ; B=0.56 \mathrm{~T} ; \theta=90^{\circ}$

Required: \vec{F}_{M}
Analysis: $F_{\mathrm{M}}=q \nu B \sin \theta$; by the right-hand rule, the direction of the force is outward from the spiral.
Solution: $F_{\mathrm{M}}=q \nu B \sin \theta$

$$
\begin{aligned}
& =\left(1.60 \times 10^{-19} \not \subset\right)\left(2.24 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(0.56 \frac{\mathrm{~kg}}{\not \subset \cdot \mathrm{~s}}\right) \sin 90^{\circ} \\
F_{\mathrm{M}} & =2.0 \times 10^{-11} \mathrm{~N}
\end{aligned}
$$

Statement: The magnetic force on the electron is $2.0 \times 10^{-11} \mathrm{~N}$, outward from the spiral.
(b) Given: $q=1.60 \times 10^{-19} \mathrm{C}$; $v=2.24 \times 10^{8} \mathrm{~m} / \mathrm{s} ; B=5.5 \times 10^{-5} \mathrm{~T}$; $\theta=90^{\circ}$

Required: F_{M}
Analysis: $F_{\mathrm{M}}=q v B \sin \theta$
Solution: $F_{\mathrm{M}}=q v B \sin \theta$

$$
\begin{aligned}
& =\left(1.60 \times 10^{-19} \not \subset\right)\left(2.24 \times 10^{8} \mathrm{~m} / \mathrm{s}\right)\left(5.5 \times 10^{-5} \frac{\mathrm{~kg}}{\not \subset \cdot \mathrm{~s}}\right) \sin 90^{\circ} \\
F_{\mathrm{M}} & =2.0 \times 10^{-15} \mathrm{~N}
\end{aligned}
$$

Statement: The magnetic force on the electron after it leaves the spiral is $2.0 \times 10^{-15} \mathrm{~N}$.
4. (a) Given: $q=-1.60 \times 10^{-19} \mathrm{C} ; \vec{v}=6.7 \times 10^{6} \mathrm{~m} / \mathrm{s}[\mathrm{E}] ; \vec{B}=2.3 \mathrm{~T} ; \theta=47^{\circ}$

Required: \vec{F}_{M}
Analysis: $F_{\mathrm{M}}=q \nu B \sin \theta$; by the right-hand rule, the direction of the electric field is north.
Solution: $F_{\mathrm{M}}=q \nu B \sin \theta$

$$
\begin{aligned}
& =\left(-1.60 \times 10^{-19} \not \subset\right)\left(6.7 \times 10^{6} \mathrm{~m} / \mathrm{s}\right)\left(2.3 \frac{\mathrm{~kg}}{\not \subset \cdot \mathrm{~s}}\right) \sin 47^{\circ} \\
& =-1.803 \times 10^{-12} \mathrm{~N}(\text { two extra digits carried }) \\
F_{\mathrm{M}} & =-1.8 \times 10^{-12} \mathrm{~N}
\end{aligned}
$$

Statement: The magnetic force on the electron is $1.8 \times 10^{-12} \mathrm{~N}[\mathrm{~N}]$.
(b) Given: $m=9.11 \times 10^{-31} \mathrm{~kg} ; F_{\mathrm{M}}=1.803 \times 10^{12} \mathrm{~N}$

Required: a
Analysis: $F_{\mathrm{M}}=m a$

$$
a=\frac{F_{\mathrm{M}}}{m}
$$

Solution: $a=\frac{F_{\mathrm{M}}}{m}$

$$
\begin{aligned}
&=\left(1.803 \times 10^{-12} \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
&\left(9.11 \times 10^{-31} \mathrm{~kg}\right) \\
& a=2.0 \times 10^{18} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Statement: The acceleration of the electron is $2.0 \times 10^{18} \mathrm{~m} / \mathrm{s}^{2}$.
(c) Given: $m=1.67 \times 10^{-27} \mathrm{~kg} ; F_{\mathrm{M}}=1.803 \times 10^{12} \mathrm{~N}$

Required: a
Analysis: $F_{\mathrm{M}}=m a$

$$
a=\frac{F_{\mathrm{M}}}{m}
$$

Solution: $a=\frac{F_{\mathrm{M}}}{m}$

$$
\begin{aligned}
&=\frac{\left(1.803 \times 10^{-12} \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}{\left(1.67 \times 10^{-27} \mathrm{~kg}\right)} \\
& a=1.1 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Statement: The acceleration of the proton is $1.1 \times 10^{15} \mathrm{~m} / \mathrm{s}^{2}$.

Section 8.2 Questions, page 391

1. The right-hand rule for a straight conductor and the right-hand rule for a solenoid both describe how to determine the direction of the magnetic field if you know the direction of a current. The right-hand rule for a moving charge in a magnetic field allows you to determine the direction of the resulting magnetic force.
2. The particle has a positive charge, since it acts in the same direction as that determined by the right-hand rule.
3. The particle has a negative charge according to the right-hand rule. If the charge tripled while the velocity was halved, the magnitude of the force would be 1.5 that of the original situation:
$F_{\mathrm{M}}=(3 q)\left(\frac{1}{2} v\right) B \sin \theta$
$F_{\mathrm{M}}=\frac{3}{2} q v B \sin \theta$
4. (a) Given: $q=1.60 \times 10^{-19} \mathrm{C} ; v=1.4 \times 10^{3} \mathrm{~m} / \mathrm{s} ; B=0.85 \mathrm{~T} ; \theta=90^{\circ}$

Required: F_{M}
Analysis: $F_{\mathrm{M}}=q v B \sin \theta$
Solution: $F_{\mathrm{M}}=q v B \sin \theta$

$$
\begin{aligned}
& =\left(1.60 \times 10^{-19} \not \subset\right)\left(1.4 \times 10^{3} \mathrm{~m} / \mathrm{s}\right)\left(0.85 \frac{\mathrm{~kg}}{\not \subset \cdot \mathrm{~s}}\right) \sin 90^{\circ} \\
F_{\mathrm{M}} & =1.9 \times 10^{-16} \mathrm{~N}
\end{aligned}
$$

Statement: The magnetic force on the proton is $1.9 \times 10^{-16} \mathrm{~N}$.
(b) The magnitude of the magnetic force on the electron is also $1.9 \times 10^{-16} \mathrm{~N}$ because the proton and electron have the same magnitude of charge.
5. Given: $q=-1.60 \times 10^{-19} \mathrm{C} ; v=235 \mathrm{~m} / \mathrm{s} ; B=2.8 \mathrm{~T} ; F_{\mathrm{M}}=5.7 \times 10^{-17} \mathrm{C}$

Required: θ

Analysis: $\quad F_{\mathrm{M}}=q v B \sin \theta$

$$
\sin \theta=\frac{F_{\mathrm{M}}}{q v B}
$$

Solution: $\sin \theta=\frac{F_{\mathrm{M}}}{q v B}$

$$
\begin{aligned}
& =\frac{\left(5.7 \times 10^{-17} \mathrm{~kg} \cdot \frac{\mathrm{mg}}{\mathrm{~s}^{\not ㇒}}\right)}{\left(-1.60 \times 10^{-19} \not \subset\right)\left(235 \frac{\mathrm{~m}}{8}\right)\left(2.8 \frac{\mathrm{~kg}}{\not \subset \cdot 8}\right)} \\
& =-0.5414 \\
\theta & =\sin ^{-1}(-0.5414) \\
\theta & =-33^{\circ}
\end{aligned}
$$

Statement: The angle between the path of the electron and the electric field is 33°.
6. By the right-hand rule, the particle is deflected downward on the plane of the page.
7. (a) Given: $q=6.4 \mu \mathrm{C}=6.4 \times 10^{-6} \mathrm{C} ; \theta=27^{\circ} ; v=170 \mathrm{~m} / \mathrm{s} ; B=0.85 \mathrm{~T}$

Required: F_{M}
Analysis: $F_{\mathrm{M}}=q v B \sin \theta$
Solution: $F_{\mathrm{M}}=q \nu B \sin \theta$

$$
\begin{aligned}
& =\left(6.4 \times 10^{-6} \not \subset\right)(170 \mathrm{~m} / \mathrm{s})\left(0.85 \frac{\mathrm{~kg}}{\not \subset \cdot \mathrm{~s}}\right) \sin 27^{\circ} \\
F_{\mathrm{M}} & =4.2 \times 10^{-4} \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the magnetic force on the particle is $4.2 \times 10^{-4} \mathrm{~N}$.
(b) By the right-hand rule, the magnetic force is in the $-z$ direction.
(c) 0 N ; there would be no force because the angle between the velocity and the magnetic field is 0°.
8. By the right-hand rule, the magnetic force is in the $+z$ direction.
9. Given: $q=-7.9 \mu \mathrm{C}=-7.9 \times 10^{-6} \mathrm{C} ; v=580 \mathrm{~m} / \mathrm{s} ; \theta=55^{\circ} ; B=1.3 \mathrm{~T}$ [$+y$ direction]

Required: \vec{F}_{M}
Analysis: $F_{\mathrm{M}}=q v B \sin \theta$; by the right-hand rule, the magnetic force is in the $-z$ direction; the given angle is with respect to the x-axis, so subtract it from 90° to get the angle between the velocity and the magnetic field.
Solution: $F_{\mathrm{M}}=q v B \sin \theta$

$$
\begin{aligned}
& =\left(-7.9 \times 10^{-6} \not \subset\right)(580 \mathrm{~m} / \mathrm{s})\left(1.3 \frac{\mathrm{~kg}}{\not \subset \cdot \mathrm{~s}}\right) \sin \left(90^{\circ}-55^{\circ}\right) \\
F_{\mathrm{M}} & =-3.4 \times 10^{-3} \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the magnetic force on the particle is $3.4 \times 10^{-3} \mathrm{~N}$ [$-z$ direction].
10. (a) Given: $m=6.644 \times 10^{-27} \mathrm{~kg} ; a=2.4 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}$

Required: F_{M}
Analysis: $F_{M}=m a$
Solution: $F_{\mathrm{M}}=m a$

$$
\begin{aligned}
& =\left(6.644 \times 10^{-27} \mathrm{~kg}\right)\left(2.4 \times 10^{3} \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =1.595 \times 10^{-23} \mathrm{~N}(\text { two extra digits carried }) \\
F_{\mathrm{M}} & =1.6 \times 10^{-23} \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the magnetic force on the alpha particle is $1.6 \times 10^{-23} \mathrm{~N}$.
(b) Given: $q=2\left(1.60 \times 10^{-19} \mathrm{C}\right) ; \theta=90^{\circ} ; B=1.4 \mathrm{~T} ; F_{\mathrm{M}}=1.595 \times 10^{-23} \mathrm{~N}$

Required: v
Analysis: $F_{\mathrm{M}}=q v B \sin \theta$

$$
v=\frac{F_{\mathrm{M}}}{q B \sin \theta}
$$

Solution: $v=\frac{F_{\mathrm{M}}}{q B \sin \theta}$

$$
\begin{aligned}
&=\left(1.595 \times 10^{-23} \mathrm{~kg} \cdot \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right) \\
& 2\left(1.60 \times 10^{-19} \ell\right)\left(1.4 \frac{\mathrm{~kg}}{\ell \cdot .8}\right) \sin 90^{\circ} \\
& v=3.6 \times 10^{-5} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Statement: The speed of the alpha particle is $3.6 \times 10^{-5} \mathrm{~m} / \mathrm{s}$.

