Section 7.2: Coulomb's Law

Tutorial 1 Practice, page 332

1. Given: $q_{1}=1.00 \times 10^{-4} \mathrm{C} ; q_{2}=1.00 \times 10^{-5} \mathrm{C} ; r=2.00 \mathrm{~m} ; k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$ Required: F_{E}
Analysis: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$
Solution: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$

$$
\begin{aligned}
= & \frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \not \mathrm{Mh}^{\text {亿 }}}{\ell^{\swarrow}}\right)\left(1.00 \times 10^{-4} \not \subset\right)\left(1.00 \times 10^{-5} \not \subset\right)}{(2.00 \mathrm{Mr})^{2}} \\
F_{\mathrm{E}} & =2.25 \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the electric force between the two charges is 2.25 N .
2. Given: $q_{1}=q ; q_{2}=-2 q ; r_{12}=1.000 \mathrm{~m} ; F_{\mathrm{E} 13}+F_{\mathrm{E} 23}=0 ; k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$ Required: r_{13}
Analysis: Use $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$ to develop a quadratic equation to solve for r_{13}.
Solution: $F_{\mathrm{E} 13}+F_{\mathrm{E} 23}=0$

$$
\begin{aligned}
F_{\mathrm{E} 13} & =-F_{\mathrm{E} 23} \\
\frac{k q_{1} q_{3}}{r_{13}^{2}} & =-\frac{k q_{2} q_{3}}{r_{23}^{2}} \\
\frac{q_{1}}{r_{13}^{2}} & =-\frac{q_{2}}{r_{23}^{2}} \\
\frac{q}{r_{13}^{2}} & =-\frac{-2 q}{\left(1.000+r_{13}\right)^{2}} \\
\left(1+r_{13}\right)^{2} & =2 r_{13}^{2} \\
1+2 r_{13}+r_{13}^{2} & =2 r_{13}^{2} \\
0 & =r_{13}^{2}-2 r_{13}-1
\end{aligned}
$$

Solve the quadratic equation:
$0=r_{13}^{2}-2 r_{13}-1$
$x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}$
$r_{13}=\frac{-(-2) \pm \sqrt{(-2)^{2}-4(1)(-1)}}{2(1)}$
$r_{13}=\frac{2 \pm \sqrt{4+4}}{2}$
$r_{13}=\frac{2 \pm 2 \sqrt{2}}{2}$
$r_{13}=1 \pm \sqrt{2}$
Only the positive distance is necessary:
$r_{13}=1+\sqrt{2} \mathrm{~m}$
$r_{13}=2.414 \mathrm{~m}$
Statement: The third charge is 2.414 m to the left of q.
3. Given: $q_{1}=+2.0 \mu \mathrm{C}=+2.0 \times 10^{-6} \mathrm{C} ; d_{1}=0 \mathrm{~m} ; q_{2}=-3.0 \mu \mathrm{C}=-3.0 \times 10^{-6} \mathrm{C}$; $d_{2}=40.0 \mathrm{~cm}=0.40 \mathrm{~m} ; q_{3}=-5.0 \mu \mathrm{C}=-5.0 \times 10^{-6} \mathrm{C} ; d_{3}=120.0 \mathrm{~cm}=1.20 \mathrm{~m}$;
$k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Required: $F_{\text {Enet }}$ at q_{2}
Analysis: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$

Solution:

Determine the electric force due to q_{1} :

$$
\begin{aligned}
F_{\mathrm{E} 12} & =\frac{k q_{1} q_{2}}{r^{2}} \\
& =\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{\boxed{ }}}{\ell^{\swarrow}}\right)\left(2.0 \times 10^{-6} \not \subset\right)\left(-3.0 \times 10^{-6} \not \varnothing\right)}{(0.40 \mathrm{~m})^{2}}
\end{aligned}
$$

$F_{\mathrm{E} 12}=-0.3371 \mathrm{~N} \quad$ (two extra digits carried)

Determine the electric force due to q_{3} :

$$
\begin{aligned}
F_{\mathrm{E} 23} & =\frac{k q_{3} q_{2}}{r^{2}} \\
& =\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{\text {² }}}{\not \ell^{2}}\right)\left(-5.0 \times 10^{-6} \not \subset\right)\left(-3.0 \times 10^{-6} \not \subset\right)}{(1.20 \mathrm{~m}-0.40 \mathrm{mr})^{2}}
\end{aligned}
$$

$F_{\text {E23 }}=0.2107 \mathrm{~N}$ (two extra digits carried)
Determine the net force:
$\vec{F}_{\text {Enet }}=\vec{F}_{\mathrm{E} 12}+\vec{F}_{\mathrm{E} 23}$

$$
=0.3371 \mathrm{~N}[\mathrm{left}]+0.2107 \mathrm{~N}[\mathrm{left}]
$$

$\vec{F}_{\text {Enet }}=0.55 \mathrm{~N}[\mathrm{left}]$
Statement: The force on the $-3.0 \mu \mathrm{C}$ charge is 0.55 N [left].
Section 7.2 Questions, page 333

1. Given: $F_{\mathrm{E} 1}=0.080 \mathrm{~N} ; r_{2}=3 r_{1}$

Required: $F_{\text {E2 }}$
Analysis: Determine how the force changes when the distance is tripled, then substitute for the original force, $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$.
Solution: $F_{\mathrm{E} 2}=\frac{k q_{1} q_{2}}{r_{2}^{2}}$

$$
\begin{aligned}
& =\frac{k q_{1} q_{2}}{\left(3 r_{1}\right)^{2}} \\
& =\frac{k q_{1} q_{2}}{9 r_{1}^{2}} \\
& =\frac{1}{9}\left(\frac{k q_{1} q_{2}}{r_{1}^{2}}\right) \\
& =\frac{1}{9} F_{\mathrm{E} 1} \\
& =\frac{1}{9}(0.080 \mathrm{~N}) \\
F_{\mathrm{E} 2} & =8.9 \times 10^{-3} \mathrm{~N}
\end{aligned}
$$

Statement: The new force is $8.9 \times 10^{-3} \mathrm{~N}$.
2. Given: $F_{\mathrm{E} 1}=0.080 \mathrm{~N} ; r_{2}=3 r_{1} ; q_{1 \mathrm{~B}}=3 q_{1 \mathrm{~A}}$

Required: $F_{\text {E2 }}$
Analysis: Determine how the force changes when the distance and the charge are tripled, then substitute for the original force; $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$.
Solution: $F_{\mathrm{E} 2}=\frac{k q_{1 \mathrm{~B}} q_{2}}{r_{2}^{2}}$

$$
\begin{aligned}
& =\frac{k\left(3 q_{1 \mathrm{~A}}\right) q_{2}}{\left(3 r_{1}\right)^{2}} \\
& =\frac{3 k q_{1 \mathrm{~A}} q_{2}}{9 r_{1}^{2}} \\
& =\frac{1}{3}\left(\frac{k q_{1 \mathrm{~A}} q_{2}}{r_{1}^{2}}\right) \\
& =\frac{1}{3} F_{\mathrm{E} 1} \\
& =\frac{1}{3}(0.080 \mathrm{~N}) \\
F_{\mathrm{E} 2} & =2.7 \times 10^{-2} \mathrm{~N}
\end{aligned}
$$

Statement: The new force is $2.7 \times 10^{-2} \mathrm{~N}$.
3. Given: $q_{1}=1.6 \times 10^{-19} \mathrm{C} ; q_{2}=1.6 \times 10^{-19} \mathrm{C} ; r=0.10 \mathrm{~nm}=1.0 \times 10^{-10} \mathrm{~m}$; $k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Required: F_{E}
Analysis: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$
Solution: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$

$$
\begin{aligned}
&=\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \not \mu^{2}}{\not \ell^{\swarrow}}\right)\left(1.6 \times 10^{-19} \not \subset\right)\left(1.6 \times 10^{-19} \not \subset\right) \\
&\left(1.0 \times 10^{-10} \mathrm{mr}\right)^{2} \\
& F_{\mathrm{E}}=2.3 \times 10^{-8} \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the electric force between the two electrons is $2.3 \times 10^{-8} \mathrm{~N}$.
4. Given: $r_{2}=\frac{1}{1.50} r_{1}$

Required: $F_{\mathrm{E} 2}$
Analysis: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$

Solution: $F_{\mathrm{E} 2}=\frac{k q_{1} q_{2}}{r_{2}^{2}}$

$$
\begin{aligned}
& =\frac{k q_{1} q_{2}}{\left(\frac{r_{1}}{1.50}\right)^{2}} \\
F_{\mathrm{E} 2} & =2.25\left(\frac{k q_{1} q_{2}}{r_{1}^{2}}\right) \\
F_{\mathrm{E} 2} & =2.25 F_{\mathrm{E} 1}
\end{aligned}
$$

Statement: The magnitude of the electric force will increase by a factor of 2.25 .
5. Given: $q_{1}=1.00 \mu \mathrm{C}=1.00 \times 10^{-6} \mathrm{C} ; q_{2}=1.00 \mu \mathrm{C}=1.00 \times 10^{-6} \mathrm{C} ; m=1.00 \mathrm{~kg}$;
$g=9.8 \mathrm{~m} / \mathrm{s}^{2} ; F_{\mathrm{E}}=F_{\mathrm{g}} ; k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Required: $F_{\mathrm{g}} ; r$
Analysis: Rearrange the equation $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$ to solve for r. Then determine F_{g}.

$$
\begin{aligned}
F_{\mathrm{E}} & =\frac{k q_{1} q_{2}}{r^{2}} \\
r & =\sqrt{\frac{k q_{1} q_{2}}{F_{\mathrm{E}}}} \\
F_{g} & =m g \\
& =(1.00 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F_{g} & =9.8 \mathrm{~N}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
r & =\sqrt{\frac{k q_{1} q_{2}}{F_{\mathrm{E}}}} \\
& =\sqrt{\frac{\left(8.99 \times 10^{9} \frac{\not \subset \cdot \mathrm{~m}^{2}}{\ell^{2}}\right)\left(1.00 \times 10^{-6} \not \subset\right)\left(1.00 \times 10^{-6} \not \subset\right)}{9.8 \not X}} \\
r & =0.030 \mathrm{~m}
\end{aligned}
$$

Statement: The distance between the charges is 0.030 m .
6. (a) Given: $m_{1}=9.11 \times 10^{-31} \mathrm{~kg} ; m_{2}=1.67 \times 10^{-27} \mathrm{~kg} ; r=1.0 \mathrm{~nm}=1.0 \times 10^{-9} \mathrm{~m}$; $G=6.67 \times 10^{-11} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{kg}^{2}$
Required: F_{g}
Analysis: $F_{\mathrm{g}}=\frac{G m_{1} m_{2}}{r^{2}}$

Solution: $F_{\mathrm{g}}=\frac{G m_{1} m_{2}}{r^{2}}$

$$
\begin{aligned}
&=\left(6.67 \times 10^{-11} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{~kg}^{2}}\right)\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(1.67 \times 10^{-27} \mathrm{~kg}\right) \\
&\left(1.0 \times 10^{-9} \mathrm{mr}\right)^{2} \\
& F_{\mathrm{g}}=1.0 \times 10^{-49} \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the gravitational force between the electron and the proton is $1.0 \times 10^{-49} \mathrm{~N}$.
(b) Given: $q_{1}=1.6 \times 10^{-19} \mathrm{C} ; q_{2}=1.6 \times 10^{-19} \mathrm{C} ; r=1.0 \times 10^{-9} \mathrm{~m} ; k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$

Required: F_{E}
Analysis: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$
Solution:

$$
\begin{aligned}
F_{\mathrm{E}} & =\frac{k q_{1} q_{2}}{r^{2}} \\
& =\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \not \mathrm{M}^{\text {L }}}{\not \ell^{\text {2 }}}\right)\left(1.6 \times 10^{-19} \not \subset\right)\left(1.6 \times 10^{-19} \not \subset\right)}{\left(1.0 \times 10^{-9} \mathrm{mr}\right)^{2}} \\
F_{\mathrm{E}} & =2.3 \times 10^{-10} \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the electric force between the electron and proton is $2.3 \times 10^{-10} \mathrm{~N}$. (c) If the distance were increased to 1.0 m , there would be no change because the ratios of the forces are independent of the separation distance.
7. Given: $q_{1}=q ; q_{2}=3 q ; r_{1}=50 ; r_{2}=-40 ; F_{\mathrm{E} 13}=F_{\mathrm{E} 23}$

Required: r_{13}
Analysis: Use $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$ to develop a quadratic equation to solve for r_{13}. First determine r_{12} :
$r_{12}=50-(-40)=90$
Solution:

$$
\begin{aligned}
F_{\mathrm{E} 13} & =F_{\mathrm{E} 23} \\
\frac{k q_{1} q_{3}}{r_{13}^{2}} & =\frac{k q_{2} q_{3}}{r_{23}^{2}} \\
\frac{q_{1}}{r_{13}^{2}} & =\frac{q_{2}}{r_{23}^{2}} \\
\frac{q}{r_{13}^{2}} & =\frac{3 q}{\left(90-r_{13}\right)^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\left(90-r_{13}\right)^{2} & =3 r_{13}^{2} \\
8100-180 r_{13}+r_{13}^{2} & =3 r_{13}^{2} \\
0 & =2 r_{13}^{2}+180 r_{13}-8100 \\
0 & =r_{13}^{2}+90 r_{13}-4050
\end{aligned}
$$

Solve the quadratic equation:

$$
\begin{aligned}
x & =\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
0 & =r_{13}^{2}+90 r_{13}-4050 \\
r_{13} & =\frac{-(90) \pm \sqrt{(90)^{2}-4(1)(-4050)}}{2(1)} \\
& =\frac{-90 \pm \sqrt{24300}}{2} \\
& =\frac{-90 \pm 90 \sqrt{3}}{2} \\
r_{13} & =-45 \pm 45 \sqrt{3}
\end{aligned}
$$

Only the positive distance is necessary:
$r_{13}=45-45 \sqrt{3}$
$r_{13}=33$
$x=-40+33$
$x=-7$
Statement: The third charge is at $x=-7$.
8. Given: $q_{1}=2.0 \times 10^{-6} \mathrm{C} ; q_{2}=-1.0 \times 10^{-6} \mathrm{C} ; r_{12}=10 \mathrm{~cm}=0.10 \mathrm{~m} ; F_{\mathrm{E} 13}+F_{\mathrm{E} 23}=0$ Required: r_{13}
Analysis: Use $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$ to develop a quadratic equation to solve for r_{13}.
Solution: $F_{\mathrm{E} 13}+F_{\mathrm{E} 23}=0$

$$
\begin{aligned}
F_{\mathrm{E} 13} & =-F_{\mathrm{E} 23} \\
\frac{k q_{1} q_{3}}{r_{13}^{2}} & =-\frac{k q_{2} q_{3}}{r_{23}^{2}} \\
\frac{q_{1}}{r_{13}^{2}} & =-\frac{q_{2}}{r_{23}^{2}}
\end{aligned}
$$

$$
\begin{aligned}
\frac{2.0 \times 10^{-6} \mathrm{C}}{r_{13}^{2}} & =-\frac{-1.0 \times 10^{-6} \mathrm{C}}{\left(0.10+r_{13}\right)^{2}} \\
\frac{2}{r_{13}^{2}} & =\frac{1}{\left(0.10+r_{13}\right)^{2}} \\
2\left(0.10+r_{13}\right)^{2} & =r_{13}^{2} \\
0.01+0.2 r_{13}+2 r_{13}^{2} & =r_{13}^{2} \\
r_{13}^{2}+0.2 r_{13}-0.01 & =0
\end{aligned}
$$

Solve the quadratic equation:

$$
\begin{aligned}
& x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} \\
& r_{13}^{2}+0.2 r_{13}-0.01=0 \\
& r_{13}=\frac{-(-0.2) \pm \sqrt{(-0.2)^{2}-4(1)(-0.01)}}{2(1)} \\
& r_{13}=\frac{0.2 \pm \sqrt{0.04+0.04}}{2} \\
& r_{13}=\frac{0.2 \pm 0.2 \sqrt{2}}{2} \\
& r_{13}=0.1 \pm \sqrt{2}
\end{aligned}
$$

Only the positive distance is necessary:
$r_{13}=0.1 \mathrm{~m}+0.1 \sqrt{2} \mathrm{~m}$
$r_{13}=0.24 \mathrm{~m}$
Statement: The third charge is 0.24 m , or 24 cm , beyond the smaller charge.
9. (a) Given: $q=7.5 \times 10^{-6} \mathrm{C} ; L=25 \mathrm{~cm}=0.25 \mathrm{~m} ; k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$

Required: $F_{\text {Enet }}$ at q_{3}
Analysis: Determine the distance between particles using the Pythagorean theorem. Then use $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$ to determine the magnitude of the electric force between two particles.
Solution: Determine the distance:

$$
\begin{aligned}
r & =\sqrt{(0.25 \mathrm{~m})^{2}+(0.25 \mathrm{~m})^{2}} \\
& =\sqrt{0.125 \mathrm{~m}^{2}} \\
r & =0.3536 \mathrm{~m} \text { (two extra digits carried) }
\end{aligned}
$$

Determine the magnitude of the electric force:

$$
\begin{aligned}
F_{\mathrm{E}} & =\frac{k q_{1} q_{2}}{r^{2}} \\
& =\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \not \mathrm{~m}^{2}}{\not \ell^{2}}\right)\left(7.5 \times 10^{-6} \not \subset\right)\left(7.5 \times 10^{-6} \not \subset\right)}{(0.3536 \mathrm{mr})^{2}}
\end{aligned}
$$

$F_{\mathrm{E}}=4.044 \mathrm{~N}$ (two extra digits carried)
The x-components of the forces will add to zero, so calculate the y-components of the forces.

$$
\begin{aligned}
F_{\text {Enet }} & =2 F_{\mathrm{E}} \sin 45^{\circ} \\
& =2(4.044 \mathrm{~N}) \sin 45^{\circ} \\
F_{\text {Enet }} & =5.7 \mathrm{~N}[\text { down }]
\end{aligned}
$$

Statement: The net force on the charge at the bottom is 5.7 N [down].
(b) Given: $q=7.5 \times 10^{-6} \mathrm{C} ; L=0.25 \mathrm{~m} ; k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2} ; F_{\mathrm{E}}=4.044 \mathrm{~N}$

Required: $F_{\text {Enet }}$ at q_{2}
Analysis: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$
Solution: Determine the magnitude of the force between the two particles on the x-axis:

$$
\begin{aligned}
F_{\mathrm{E}} & =\frac{k q_{1} q_{2}}{r^{2}} \\
& =\frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \not \mathrm{~m}^{2}}{\not \ell^{2}}\right)\left(7.5 \times 10^{-6} \not \subset\right)\left(7.5 \times 10^{-6} \not \subset\right)}{(0.25 \mathrm{~m}+0.25 \mathrm{~m})^{2}}
\end{aligned}
$$

$=2.023 \mathrm{~N}$ (two extra digits carried)
$F_{\mathrm{E}}=2.0 \mathrm{~N}$
Determine the x - and y-components of the diagonal force:

$$
\begin{aligned}
F_{\mathrm{E} x} & =F_{\mathrm{E}} \sin 45^{\circ} & F_{\mathrm{E} y} & =F_{\mathrm{E}} \cos 45^{\circ} \\
& =(4.044 \mathrm{~N}) \sin 45^{\circ} & & =(4.044 \mathrm{~N}) \cos 45^{\circ} \\
F_{\mathrm{E} x} & =2.860 \mathrm{~N} & F_{\mathrm{E} y} & =2.860 \mathrm{~N}
\end{aligned}
$$

Add the horizontal forces:
$2.860 \mathrm{~N}+2.023 \mathrm{~N}=4.883 \mathrm{~N}$ [to the right]
The vertical force is 2.860 N [up].
Determine the magnitude of the net force:

$$
\begin{aligned}
F_{\text {Enet }} & =\sqrt{(4.883 \mathrm{~N})^{2}+(2.860 \mathrm{~N})^{2}} \\
& =\sqrt{32.02 \mathrm{~N}^{2}} \\
& =5.659 \mathrm{~N}(\text { two extra digits carried }) \\
F_{\text {Enet }} & =5.7 \mathrm{~N}
\end{aligned}
$$

Determine the direction of the net force:

$$
\begin{aligned}
\tan \theta & =\frac{2.860 \mathrm{~N}}{4.883 \mathrm{~N}} \\
\theta & =\tan ^{-1}\left(\frac{2.860 \not X}{4.883 \not X}\right) \\
\theta & =30^{\circ}
\end{aligned}
$$

Statement: The net force on the charge on the right is $5.7 \mathrm{~N}\left[\mathrm{E} 30^{\circ} \mathrm{N}\right]$.
(c) Given: $q=7.5 \times 10^{-6} \mathrm{C} ; L=0.25 \mathrm{~m} ; q_{\mathrm{e}}=1.6 \times 10^{-19} \mathrm{C} ; k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$

Required: $F_{\text {Enet }}$ at origin
Analysis: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$; the two charges on the x-axis have a net force of zero, so the only force is an attractive force from the charge at the bottom.
Solution: $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$

$$
\begin{aligned}
= & \frac{\left(8.99 \times 10^{9} \frac{\mathrm{~N} \cdot \not \mathrm{M}^{\boxed{2}}}{\ell^{\boxed{ }}}\right)\left(7.5 \times 10^{-6} \not \subset\right)\left(1.6 \times 10^{-19} \not \subset\right)}{(0.25 \mathrm{~m})^{2}} \\
& =1.726 \times 10^{-13} \mathrm{~N}(\text { two extra digits carried }) \\
F_{\mathrm{E}} & =1.7 \times 10^{-13} \mathrm{~N}
\end{aligned}
$$

Statement: The net force on the electron is $1.7 \times 10^{-13} \mathrm{~N}$ [down].
10. Given: $m=5.00 \mathrm{~g}=5.00 \times 10^{-3} \mathrm{~kg} ; L=1.00 \mathrm{~m} ; \theta=30.0^{\circ} ; \mathrm{g}=9.8 \mathrm{~m} / \mathrm{s}^{2}$; $k=8.99 \times 10^{9} \mathrm{~N} \cdot \mathrm{~m}^{2} / \mathrm{C}^{2}$
Required: q
Analysis: The electric, gravitational, and tension forces on the pith balls give a net force of zero. Since the electric force is entirely horizontal and the gravitational force is entirely vertical, first determine the gravitational force, $F_{\mathrm{g}}=m g$. Then use trigonometry to determine the tension force and the electric force. Use $F_{\mathrm{E}}=\frac{k q_{1} q_{2}}{r^{2}}$ to determine the charge on each pith ball. Draw a sketch of the situation.

Solution: Determine the gravitational force on one pith ball:

$$
\begin{aligned}
F_{\mathrm{g}} & =m g \\
& =\left(5.00 \times 10^{-3} \mathrm{~kg}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
F_{\mathrm{g}} & =0.490 \mathrm{~N}
\end{aligned}
$$

Determine the force of tension on one pith ball:

$$
\begin{aligned}
F_{\mathrm{g}} & =F_{\mathrm{T}} \cos \left(\frac{30.0^{\circ}}{2}\right) \\
F_{\mathrm{T}} & =\frac{F_{\mathrm{g}}}{\cos 15.0^{\circ}} \\
& =\frac{0.490 \mathrm{~N}}{\cos 15.0^{\circ}} \\
F_{\mathrm{T}} & =0.5073 \mathrm{~N}
\end{aligned}
$$

Determine the electric force on one pith ball:

$$
\begin{aligned}
F_{\mathrm{E}} & =F_{\mathrm{T}} \sin \left(\frac{30.0^{\circ}}{2}\right) \\
& =(0.5073 \mathrm{~N}) \sin 15.0^{\circ} \\
F_{\mathrm{E}} & =1.313 \times 10^{-2} \mathrm{~N}
\end{aligned}
$$

Determine the distance between pith balls:

$$
\begin{aligned}
r & =2 L \sin \left(\frac{30.0^{\circ}}{2}\right) \\
& =2(1.00 \mathrm{~m}) \sin 15.0^{\circ} \\
r & =0.5176 \mathrm{~m}
\end{aligned}
$$

Determine the charge on the pith balls:

$$
\begin{aligned}
F_{\mathrm{E}} & =\frac{k q_{1} q_{2}}{r^{2}} \\
F_{\mathrm{E}} & =\frac{k q^{2}}{r^{2}} \\
q^{2} & =\frac{F_{\mathrm{E}} r^{2}}{k} \\
q & =\sqrt{\frac{F_{\mathrm{E}} r^{2}}{k}} \\
& =\sqrt{\frac{\left(1.313 \times 10^{-2} \mathrm{X}\right)(0.5176 \mathrm{~m})^{2}}{\left(8.99 \times 10^{9} \frac{\mathrm{X}^{2} \cdot \mathrm{mr}^{2}}{\mathrm{C}^{2}}\right)}} \\
q & =6.26 \times 10^{-7} \mathrm{C}
\end{aligned}
$$

Statement: The charge on each pith ball is $6.26 \times 10^{-7} \mathrm{C}$.

