Section 4.3: Gravitational Potential Energy

Tutorial 1 Practice, page 180

1. Given: $m = 0.02 \text{ kg}; \Delta d = 8.0 \text{ m}; g = 9.8 \text{ m/s}^2$

Required: ΔE_{g}

Analysis: Use the gravitational potential energy equation, $\Delta E_g = mg\Delta y$. Let the y = 0

reference point be the ground.

Solution: $\Delta E_{g} = mg\Delta y$

$$=(0.02 \text{ kg})(9.8 \text{ m/s}^2)(8.0 \text{ m})$$

 $\Delta E_{\rm g} = 1.6 \text{ J}$

Statement: The change in potential energy between the branch and the ground is 1.6 J. 2. Given: $\Delta E_g = 660 \text{ J}; \ \Delta y = 2.2 \text{ m}; g = 9.8 \text{ m/s}^2$

Required: *m*

Analysis: Rearrange the gravitational potential energy equation, $\Delta E_g = mg\Delta y$, to solve for *m*.

Solution:
$$\Delta E_{g} = mg\Delta y$$

$$m = \frac{\Delta E_g}{g \Delta y}$$
$$= \frac{660 \text{ J}}{(9.8 \text{ m/s}^2)(2.2 \text{ m})}$$
$$m = 31 \text{ kg}$$

Statement: The mass of the loaded barbell is 31 kg.

3. Given: height of each book, h = 3.6 cm = 0.036 m; number of extra books = 2 **Required:** W

Analysis: $\Delta E_{g} = mg\Delta y$

The 11th book is moved 10×3.6 cm and the 12th book is moved 11×3.6 cm. Solution: $\Delta E_{g} = mg\Delta y$

=
$$(1.6 \text{ kg})(9.8 \text{ m/s}^2)[10(0.036 \text{ m}) + 11(0.036 \text{ m})]$$

 $\Delta E_g = 12 \text{ J}$

Statement: The work done by the student to stack the two extra books is 12 J.

Section 4.3 Questions, page 181

1. (a) Given: m = 2.5 kg; g = 9.8 m / s²; $\Delta y = 2.0$ m Required: E_k

Analysis: The kinetic energy of the wood when it hits the table is equal to the potential energy of the wood before it falls. $E_k = \Delta E_g = mg\Delta y$

Solution: $E_{k} = E_{g}$ = $mg\Delta y$ = (2.5 kg)(9.8 m/s²)(2.0 m) $E_{k} = 49 J$

Statement: The kinetic energy of the piece of wood as it hits the table is 49 J. (b) Given: $m = 2.5 \text{ kg}; E_k = 49 \text{ J}$

Required: v

Analysis: $E_{\rm k} = \frac{1}{2}mv^2$; solve for v

Solution: $E_k = \frac{1}{2}mv^2$ $\frac{2E_k}{2} = v^2$

$$\frac{2E_{k}}{m} = v^{2}$$

$$v = \sqrt{\frac{2E_{k}}{m}}$$

$$= \sqrt{\frac{2(49 \text{ J})}{2.5 \text{ kg}}}$$

v = 6.3 m/s

Statement: The speed of the wood as it hits the table is 6.3 m/s.

2. Given: $g = 9.8 \text{ m/s}^2$; m = 5.0 kg; $\Delta y = 553 \text{ m}$ Required: E_g Analysis: $E_g = mg\Delta y$ Solution: $E_g = mg\Delta y$ $= (5.0 \text{ kg})(9.8 \text{ m/s}^2)(553 \text{ m})$ $E_g = 2.7 \times 10^4 \text{ J}$ Statement: The gravitational potential energy of the Canada goose is $2.7 \times 10^4 \text{ J}$.

3. (a) Given: m = 175 g = 0.175 kg; $\Delta y = 1.05 \text{ m}$; $g = -9.8 \text{ m/s}^2$ Required: gravitational potential energy of the puck, E_g Analysis: $E_g = mg\Delta y$ Solution: $E_g = mg\Delta y$ $= (0.175 \text{ kg})(9.8 \text{ m/s}^2)(1.05 \text{ m})$ $E_g = 1.8 \text{ J}$ Statement: The gravitational potential energy of the puck is 1.8 J. (b) Given: $E_g = 1.8 \text{ J}$ Required: change in gravitational potential energy of puck, ΔE_g

Analysis: Since the gravitational potential energy of the puck when it hits the ice is equal to 0, it is expressed as $\Delta E_g = -E_g$.

Solution: $\Delta E_{g} = -E_{g}$ $\Delta E_{o} = -1.8 \text{ J}$

Statement: The change in gravitational potential energy of the puck is -1.8 J.

(c) Given: $\Delta E_g = -1.8 \text{ J}$

Required: work done by the puck, W

Analysis: Since work and energy use the same units, W is equal to the change in gravitational potential energy of the puck.

Solution: $W = \Delta E_{g}$

W = -1.8 J

Statement: The work done on the puck by gravity is 1.8 J.

4. The total work done is 0 J. The work done by gravity while you lift the cat is exactly balanced by the work done by gravity while you lower the cat.

5. Given: $\Delta y = -5.4 \text{ m}; \Delta E_g = -3.1 \times 10^3 \text{ J}; g = 9.8 \text{ m} / \text{s}^2$

Required: *m*

Thus,

Analysis: $E_g = mg\Delta y$

Solution: At the mat, the pole vaulter's gravitational potential energy is 0 J.

$$\Delta E_{g} = -E_{g}.$$

$$\Delta E_{g} = -E_{g}$$

$$\Delta E_{g} = -mg\Delta y$$

$$m = -\frac{\Delta E_{g}}{g\Delta y}$$

$$= \frac{-3.1 \times 10^{3} \text{ J}}{(9.8 \text{ m/s}^{2})(-5.4 \text{ m})}$$

$$m = 59 \text{ kg}$$

Statement: The pole vaulter's mass is 59 kg.

6. Given: $m = 0.46 \text{ kg}; \Delta E_g = 155 \text{ J}; g = 9.8 \text{ m}/\text{s}^2$

Required: Δy

Analysis: $\Delta E_g = mg\Delta y$ **Solution:** $\Delta E = mg\Delta v$

Solution:
$$\Delta E_g = mg\Delta y$$

$$\Delta y = \frac{\Delta E_g}{mg}$$
$$= \frac{155 \text{ J}}{(0.46 \text{ kg})(9.8 \text{ m/s}^2)}$$
$$\Delta y = 34 \text{ m}$$

Statement: The maximum height of the ball above the tee is 34 m.

7. Given: m = 59 kg; $\Delta y = 1.3 \text{ km} = 1300 \text{ m}$; $\theta = 14^{\circ}$; $g = 9.8 \text{ m/s}^2$ Required: E_g Analysis: $\sin \theta = \frac{\Delta y}{d}$; $E_g = mg \Delta y$ $\Delta y = d \sin \theta$ Solution: $\Delta y = d \sin \theta$ $= (1300 \text{ m}) \sin 14^{\circ}$ $\Delta y = 314.498 \text{ m}$ (four extra digits carried) $E_g = mg \Delta y$ $= (59 \text{ kg})(9.8 \text{ m/s}^2)(314.498 \text{ m})$ $E_g = 1.8 \times 10^5 \text{ J}$

Statement: The snowboarder's gravitational potential energy is 1.8×10^5 J. **8. (a)** The work done on the first box is zero, because it doesn't move. The second box is lifted a height of Δy , the third is lifted a height of $2\Delta y$, the fourth is lifted a height of

 $3\Delta y$, and so on until the *N*th box, which is lifted a height of $(N-1)\Delta y$. Therefore, the work done to raise the last box to the top of the pile is expressed as $mg(N-1)\Delta y$.

(b) As in Sample Problem 3 of Tutorial 1 on page 180, the gravitational potential energy of the stack of boxes is the sum of the gravitational potential energies of the individual boxes.

$$\Delta E_{g} = mg[0 \times \Delta y + 1 \times \Delta y + 2 \times \Delta y + 3 \times \Delta y + \dots + (N-1)\Delta y]$$

$$\Delta E_{g} = mg\Delta y[0 + 1 + 2 + 3 + \dots + (N-1)]$$

The sum of an arithmetic sequence is given by the formula $S_n = \frac{n}{2} [2a_1 + (n-1)d]$. To

find the sum of the sequence $0 + 1 + 2 + 3 + \dots + (N-1)$, substitute n = N, $a_1 = 0$, and d = 1.

$$S_{n} = \frac{n}{2} [2a_{1} + (n-1)d]$$
$$S_{N} = \frac{N}{2} [2(0) + (N-1)(1)]$$
$$S_{N} = \frac{N(N-1)}{2}$$

Therefore, the gravitational potential energy that is stored in the entire pile is expressed as:

$$\Delta E_{g} = \frac{mg\Delta y N(N-1)}{2}$$
$$\Delta E_{g} = mgN(N-1)\frac{\Delta y}{2}$$

9. Answers may vary. Sample answer:

Given: $E_c = 1.3 \times 10^8 \text{ J}$; 3.79 L = 1 gal; $g = 9.8 \text{ m/s}^2$; 30 students in class; average mass of each student = 70 kg

Required: Δy

Analysis: Find the chemical potential energy, E_{c1} , in 1 L of gas by dividing E_c by 3.79. Find the total mass of the class of students. Solve the equation $E_g = mg\Delta y$ for Δy .

Solution:
$$E_{c1} = \frac{E_c}{3.79}$$

= $\frac{1.3 \times 10^8 \text{ J}}{3.79}$
 $E_{c1} = 3.43 \times 10^7 \text{ J}$ (one extra digit carried)

There are 3.43×10^7 J of chemical potential energy in 1 L of gas. Assuming that there are 30 students in the class, each with an average mass of 70 kg, this equals a total mass of 30×70 kg = 2100 kg.

Therefore,

$$E_{g} = mg\Delta y$$

$$\Delta y = \frac{E_{g}}{mg}$$

$$= \frac{3.43 \times 10^{7} \text{ J}}{(2100 \text{ kg})(9.8 \text{ m/s}^{2})}$$

$$\Delta y = 1700 \text{ m}$$

Statement: The chemical potential energy of the gas could lift the students 1700 m if it could all be converted to gravitational potential energy.