Section 4.3: Gravitational Potential Energy
 Tutorial 1 Practice, page 180

1. Given: $m=0.02 \mathrm{~kg} ; \Delta d=8.0 \mathrm{~m} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Required: ΔE_{g}
Analysis: Use the gravitational potential energy equation, $\Delta E_{\mathrm{g}}=m g \Delta y$. Let the $y=0$
reference point be the ground.
Solution: $\Delta E_{\mathrm{g}}=m g \Delta y$

$$
\begin{aligned}
& =(0.02 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(8.0 \mathrm{~m}) \\
\Delta E_{\mathrm{g}} & =1.6 \mathrm{~J}
\end{aligned}
$$

Statement: The change in potential energy between the branch and the ground is 1.6 J .
2. Given: $\Delta E_{\mathrm{g}}=660 \mathrm{~J} ; \Delta y=2.2 \mathrm{~m} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Required: m
Analysis: Rearrange the gravitational potential energy equation, $\Delta E_{\mathrm{g}}=m g \Delta y$, to solve for m.
Solution: $\Delta E_{\mathrm{g}}=m g \Delta y$

$$
\begin{aligned}
m & =\frac{\Delta E_{\mathrm{g}}}{g \Delta y} \\
& =\frac{660 \mathrm{~J}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.2 \mathrm{~m})} \\
m & =31 \mathrm{~kg}
\end{aligned}
$$

Statement: The mass of the loaded barbell is 31 kg .
3. Given: height of each book, $h=3.6 \mathrm{~cm}=0.036 \mathrm{~m}$; number of extra books $=2$

Required: W
Analysis: $\Delta E_{\mathrm{g}}=m g \Delta y$
The 11th book is moved $10 \times 3.6 \mathrm{~cm}$ and the 12 th book is moved $11 \times 3.6 \mathrm{~cm}$.
Solution: $\Delta E_{\mathrm{g}}=m g \Delta y$

$$
\begin{aligned}
& =(1.6 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)[10(0.036 \mathrm{~m})+11(0.036 \mathrm{~m})] \\
\Delta E_{\mathrm{g}} & =12 \mathrm{~J}
\end{aligned}
$$

Statement: The work done by the student to stack the two extra books is 12 J .

Section 4.3 Questions, page 181

1. (a) Given: $m=2.5 \mathrm{~kg} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2} ; \Delta y=2.0 \mathrm{~m}$

Required: E_{k}
Analysis: The kinetic energy of the wood when it hits the table is equal to the potential energy of the wood before it falls. $E_{\mathrm{k}}=\Delta E_{\mathrm{g}}=m g \Delta y$

Solution: $E_{\mathrm{k}}=E_{\mathrm{g}}$

$$
\begin{aligned}
& =m g \Delta y \\
& =(2.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(2.0 \mathrm{~m}) \\
E_{\mathrm{k}} & =49 \mathrm{~J}
\end{aligned}
$$

Statement: The kinetic energy of the piece of wood as it hits the table is 49 J .
(b) Given: $m=2.5 \mathrm{~kg} ; E_{\mathrm{k}}=49 \mathrm{~J}$

Required: v
Analysis: $E_{\mathrm{k}}=\frac{1}{2} m v^{2}$; solve for v
Solution: $E_{\mathrm{k}}=\frac{1}{2} m v^{2}$

$$
\begin{aligned}
\frac{2 E_{\mathrm{k}}}{m} & =v^{2} \\
v & =\sqrt{\frac{2 E_{\mathrm{k}}}{m}} \\
& =\sqrt{\frac{2(49 \mathrm{~J})}{2.5 \mathrm{~kg}}} \\
v & =6.3 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Statement: The speed of the wood as it hits the table is $6.3 \mathrm{~m} / \mathrm{s}$.
2. Given: $g=9.8 \mathrm{~m} / \mathrm{s}^{2} ; m=5.0 \mathrm{~kg} ; \Delta y=553 \mathrm{~m}$

Required: E_{g}
Analysis: $E_{\mathrm{g}}=m g \Delta y$
Solution: $E_{\mathrm{g}}=m g \Delta y$

$$
\begin{aligned}
& =(5.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(553 \mathrm{~m}) \\
E_{\mathrm{g}} & =2.7 \times 10^{4} \mathrm{~J}
\end{aligned}
$$

Statement: The gravitational potential energy of the Canada goose is $2.7 \times 10^{4} \mathrm{~J}$.
3. (a) Given: $m=175 \mathrm{~g}=0.175 \mathrm{~kg} ; \Delta y=1.05 \mathrm{~m} ; g=-9.8 \mathrm{~m} / \mathrm{s}^{2}$

Required: gravitational potential energy of the puck, E_{g}
Analysis: $E_{\mathrm{g}}=m g \Delta y$
Solution: $E_{\mathrm{g}}=m g \Delta y$

$$
\begin{aligned}
& =(0.175 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(1.05 \mathrm{~m}) \\
E_{\mathrm{g}} & =1.8 \mathrm{~J}
\end{aligned}
$$

Statement: The gravitational potential energy of the puck is 1.8 J .
(b) Given: $E_{\mathrm{g}}=1.8 \mathrm{~J}$

Required: change in gravitational potential energy of puck, ΔE_{g}
Analysis: Since the gravitational potential energy of the puck when it hits the ice is equal to 0 , it is expressed as $\Delta E_{\mathrm{g}}=-E_{\mathrm{g}}$.

Solution: $\Delta E_{\mathrm{g}}=-E_{\mathrm{g}}$

$$
\Delta E_{\mathrm{g}}=-1.8 \mathrm{~J}
$$

Statement: The change in gravitational potential energy of the puck is -1.8 J .
(c) Given: $\Delta E_{\mathrm{g}}=-1.8 \mathrm{~J}$

Required: work done by the puck, W
Analysis: Since work and energy use the same units, W is equal to the change in gravitational potential energy of the puck.
Solution: $W=\Delta E_{\mathrm{g}}$

$$
W=-1.8 \mathrm{~J}
$$

Statement: The work done on the puck by gravity is 1.8 J .
4. The total work done is 0 J . The work done by gravity while you lift the cat is exactly balanced by the work done by gravity while you lower the cat.
5. Given: $\Delta y=-5.4 \mathrm{~m} ; \Delta E_{\mathrm{g}}=-3.1 \times 10^{3} \mathrm{~J} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Required: m
Analysis: $E_{g}=m g \Delta y$
Solution: At the mat, the pole vaulter's gravitational potential energy is 0 J .
Thus, $\Delta E_{\mathrm{g}}=-E_{\mathrm{g}}$.
$\Delta E_{\mathrm{g}}=-E_{\mathrm{g}}$
$\Delta E_{\mathrm{g}}=-m g \Delta y$
$m=-\frac{\Delta E_{\mathrm{g}}}{g \Delta y}$
$=\frac{-3.1 \times 10^{3} \mathrm{~J}}{\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(-5.4 \mathrm{~m})}$
$m=59 \mathrm{~kg}$
Statement: The pole vaulter's mass is 59 kg .
6. Given: $m=0.46 \mathrm{~kg} ; \Delta E_{\mathrm{g}}=155 \mathrm{~J} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Required: Δy
Analysis: $\Delta E_{\mathrm{g}}=m g \Delta y$
Solution: $\Delta E_{\mathrm{g}}=m g \Delta y$

$$
\begin{aligned}
\Delta y & =\frac{\Delta E_{\mathrm{g}}}{m g} \\
& =\frac{155 \mathrm{~J}}{(0.46 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
\Delta y & =34 \mathrm{~m}
\end{aligned}
$$

Statement: The maximum height of the ball above the tee is 34 m .
7. Given: $m=59 \mathrm{~kg} ; \Delta y=1.3 \mathrm{~km}=1300 \mathrm{~m} ; \theta=14^{\circ} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Required: E_{g}
Analysis: $\sin \theta=\frac{\Delta y}{d} \quad ; E_{\mathrm{g}}=m g \Delta y$

$$
\Delta y=d \sin \theta
$$

Solution: $\Delta y=d \sin \theta$

$$
=(1300 \mathrm{~m}) \sin 14^{\circ}
$$

$$
\Delta y=314.498 \mathrm{~m} \text { (four extra digits carried) }
$$

$$
\begin{aligned}
E_{\mathrm{g}} & =m g \Delta y \\
& =(59 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(314.498 \mathrm{~m}) \\
E_{\mathrm{g}} & =1.8 \times 10^{5} \mathrm{~J}
\end{aligned}
$$

Statement: The snowboarder's gravitational potential energy is $1.8 \times 10^{5} \mathrm{~J}$.
8. (a) The work done on the first box is zero, because it doesn't move. The second box is lifted a height of Δy, the third is lifted a height of $2 \Delta y$, the fourth is lifted a height of $3 \Delta y$, and so on until the N th box, which is lifted a height of $(N-1) \Delta y$. Therefore, the work done to raise the last box to the top of the pile is expressed as $m g(N-1) \Delta y$.
(b) As in Sample Problem 3 of Tutorial 1 on page 180, the gravitational potential energy of the stack of boxes is the sum of the gravitational potential energies of the individual boxes.

$$
\begin{aligned}
& \Delta E_{\mathrm{g}}=m g[0 \times \Delta y+1 \times \Delta y+2 \times \Delta y+3 \times \Delta y+\cdots+(N-1) \Delta y] \\
& \Delta E_{\mathrm{g}}=m g \Delta y[0+1+2+3+\cdots+(N-1)]
\end{aligned}
$$

The sum of an arithmetic sequence is given by the formula $S_{n}=\frac{n}{2}\left[2 a_{1}+(n-1) d\right]$. To find the sum of the sequence $0+1+2+3+\ldots+(N-1)$, substitute $n=N, a_{1}=0$, and $d=1$.

$$
\begin{aligned}
S_{n} & =\frac{n}{2}\left[2 a_{1}+(n-1) d\right] \\
S_{N} & =\frac{N}{2}[2(0)+(N-1)(1)] \\
S_{N} & =\frac{N(N-1)}{2}
\end{aligned}
$$

Therefore, the gravitational potential energy that is stored in the entire pile is expressed as:

$$
\begin{aligned}
& \Delta E_{\mathrm{g}}=\frac{m g \Delta y N(N-1)}{2} \\
& \Delta E_{\mathrm{g}}=m g N(N-1) \frac{\Delta y}{2}
\end{aligned}
$$

9. Answers may vary. Sample answer:

Given: $E_{\mathrm{c}}=1.3 \times 10^{8} \mathrm{~J} ; 3.79 \mathrm{~L}=1 \mathrm{gal} ; g=9.8 \mathrm{~m} / \mathrm{s}^{2} ; 30$ students in class; average mass of each student $=70 \mathrm{~kg}$
Required: Δy
Analysis: Find the chemical potential energy, $E_{\mathrm{c} 1}$, in 1 L of gas by dividing E_{c} by 3.79. Find the total mass of the class of students. Solve the equation $E_{\mathrm{g}}=m g \Delta y$ for Δy.
Solution: $E_{\mathrm{c} 1}=\frac{E_{\mathrm{c}}}{3.79}$

$$
\begin{aligned}
& =\frac{1.3 \times 10^{8} \mathrm{~J}}{3.79} \\
E_{\mathrm{c} 1} & =3.43 \times 10^{7} \mathrm{~J} \text { (one extra digit carried) }
\end{aligned}
$$

There are $3.43 \times 10^{7} \mathrm{~J}$ of chemical potential energy in 1 L of gas. Assuming that there are 30 students in the class, each with an average mass of 70 kg , this equals a total mass of $30 \times 70 \mathrm{~kg}=2100 \mathrm{~kg}$.
Therefore,

$$
\begin{aligned}
E_{\mathrm{g}} & =m g \Delta y \\
\Delta y & =\frac{E_{\mathrm{g}}}{m g} \\
& =\frac{3.43 \times 10^{7} \mathrm{~J}}{(2100 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
\Delta y & =1700 \mathrm{~m}
\end{aligned}
$$

Statement: The chemical potential energy of the gas could lift the students 1700 m if it could all be converted to gravitational potential energy.

