Section 2.3: Applying Newton's Laws of Motion

Tutorial 1 Practice, page 79

1. Given: $\vec{F}_{\mathrm{gB}}=2.8 \mathrm{~N} ; \vec{F}_{\mathrm{gA}}=6.5 \mathrm{~N} ; \vec{F}_{\mathrm{f}}=1.4 \mathrm{~N}$
(a) Required: F_{1}

Analysis: $\Sigma \vec{F}=0 \mathrm{~N}$
Solution: The FBD for block B is shown below.

Equation for block B:

$$
\begin{aligned}
\Sigma \vec{F} & =0 \mathrm{~N} \\
\vec{F}_{1}-\vec{F}_{\mathrm{gB}} & =0 \mathrm{~N} \\
\vec{F}_{1} & =\vec{F}_{\mathrm{gB}} \\
\vec{F}_{1} & =2.8 \mathrm{~N}
\end{aligned}
$$

Statement: The tension in the vertical rope is 2.8 N .
(b) Given: $\vec{F}_{\mathrm{gA}}=6.5 \mathrm{~N} ; \vec{F}_{\mathrm{f}}=1.4 \mathrm{~N}$

Required: $\vec{F}_{2} ; \vec{F}_{\mathrm{N}}$
Analysis: $\Sigma \vec{F}=0 \mathrm{~N}$
Solution: The FBD for block A is shown below.

Equations for block A:

$$
\begin{array}{rlr}
\Sigma \vec{F}_{x} & =0 \mathrm{~N} & \Sigma \vec{F} \\
\vec{F}_{2}-\vec{F}_{\mathrm{f}} & =0 \mathrm{~N} \\
\vec{F}_{2} & =\vec{F}_{\mathrm{f}} & \vec{F}_{\mathrm{N}}-\vec{F}_{\mathrm{gA}}
\end{array}=0 \mathrm{~N}, ~ \vec{F}_{\mathrm{N}}=\vec{F}_{\mathrm{gA}} .
$$

Statement: The tension in the horizontal rope is 1.4 N . The normal force acting on block A is 6.5 N .
(c) Given: $\vec{F}_{2}=1.4 \mathrm{~N}$

Required: \vec{F}_{3}
Analysis: $\Sigma \vec{F}=0 \mathrm{~N}$
Solution: The FBD for point P is shown below.

Equations for point P.
For the x-components of the force:

$$
\begin{aligned}
\Sigma \vec{F}_{x} & =0 \mathrm{~N} \\
\vec{F}_{3 x}-\vec{F}_{2} & =0 \mathrm{~N} \\
\vec{F}_{3 x} & =\vec{F}_{2} \\
\vec{F}_{3 x} & =1.4 \mathrm{~N}
\end{aligned}
$$

For the y-components of the force:

$$
\begin{aligned}
\Sigma \vec{F} & =0 \mathrm{~N} \\
\vec{F}_{3 y}-\vec{F}_{1} & =0 \mathrm{~N} \\
\vec{F}_{3 y} & =\vec{F}_{1} \\
\vec{F}_{3 y} & =2.8 \mathrm{~N}
\end{aligned}
$$

Construct the vector \vec{F}_{3} from its components:

$$
\begin{aligned}
\left|\vec{F}_{3}\right| & =\sqrt{\left(\vec{F}_{3 x}\right)^{2}+\left(\vec{F}_{3 y}\right)^{2}} \\
& =\sqrt{(1.4 \mathrm{~N})^{2}+(2.8 \mathrm{~N})^{2}} \\
\left|\vec{F}_{3}\right| & =3.1 \mathrm{~N} \\
\theta & =\tan ^{-1}\left(\frac{\vec{F}_{3 y}}{\vec{F}_{3 x}}\right) \\
& =\tan ^{-1}\left(\frac{2.8 \mathrm{X}}{1.4 \text { X }}\right) \\
\theta & =63^{\circ}
\end{aligned}
$$

Statement: The tension in the third rope is 3.1 N [right $63^{\circ} \mathrm{up}$].
2. Given: $m=62 \mathrm{~kg} ; \vec{F}_{\mathrm{T}}=7.1 \times 10^{2} \mathrm{~N}$ [right 32° up]

Required: \vec{F}_{w}
Analysis: $\Sigma \vec{F}=0 \mathrm{~N}$
Balance the x-components of the forces:

$$
\begin{aligned}
\Sigma \vec{F}_{x} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{W} x}+\vec{F}_{\mathrm{T}} \cos \theta & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{W} x} & =-\vec{F}_{\mathrm{T}} \cos \theta \\
& =-(710 \mathrm{~N}) \cos 32^{\circ} \\
\vec{F}_{\mathrm{W} x} & =-602.1 \mathrm{~N} \text { (two extra digits carried) }
\end{aligned}
$$

Balance the y-components of the forces:

$$
\begin{aligned}
\Sigma \vec{F}_{y} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{w} y}+\vec{F}_{\mathrm{T} y}-\vec{F}_{\mathrm{g}} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{w} y} & =-\vec{F}_{\mathrm{T}} \sin \theta+m g \\
\vec{F}_{\mathrm{w} y} & =-(710 \mathrm{~N}) \sin 32^{\circ}+(62 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =-376.2 \mathrm{~N}+607.6 \mathrm{~N} \\
\vec{F}_{\mathrm{W} y} & =231.4 \mathrm{~N} \text { (two extra digits carried })
\end{aligned}
$$

Construct the vector \vec{F}_{w} from its components:

$$
\begin{aligned}
\left|\vec{F}_{\mathrm{w}}\right| & =\sqrt{\left(\vec{F}_{\mathrm{W} x}\right)^{2}+\left(\vec{F}_{\mathrm{w}_{y}}\right)^{2}} \\
= & \sqrt{(602.1 \mathrm{~N})^{2}+(231.4 \mathrm{~N})^{2}} \text { (two extra digits carried) } \\
\left|\vec{F}_{\mathrm{w}}\right| & =6.5 \times 10^{2} \mathrm{~N} \\
\theta= & \tan ^{-1}\left(\frac{F_{\mathrm{w} y}}{F_{\mathrm{w} x}}\right) \\
= & \tan ^{-1}\left(\frac{231.4 \not X}{602.1 \not X}\right) \\
\theta & =21^{\circ}
\end{aligned}
$$

Statement: The force exerted by the wall on the climber's feet is $6.5 \times 10^{2} \mathrm{~N}$ [left $\left.21^{\circ} \mathrm{up}\right]$.
3. Given: $\vec{F}_{1}=60.0 \mathrm{~N}\left[\mathrm{E} 30.0^{\circ} \mathrm{S}\right] ; \vec{F}_{2}=50.0 \mathrm{~N}\left[\mathrm{E} 60.0^{\circ} \mathrm{N}\right] ; \Sigma \vec{F}=0 \mathrm{~N}$

Required: \vec{F}_{3}
Analysis: $\Sigma \vec{F}=0 \mathrm{~N} ; \vec{F}_{1}+\vec{F}_{2}+\vec{F}_{3}=0 \mathrm{~N}$. Choose east and north as positive.
Solution: For the x-components of the force:

$$
\begin{aligned}
\vec{F}_{1 x}+\vec{F}_{2 x}+\vec{F}_{3 x} & =0 \mathrm{~N} \\
\vec{F}_{3 x} & =-(60.0 \mathrm{~N}) \cos 30.0^{\circ}-(50.0 \mathrm{~N}) \cos 60.0^{\circ} \\
& =-51.96 \mathrm{~N}-25.0 \mathrm{~N} \\
\vec{F}_{3 x} & =-76.96 \mathrm{~N} \text { (two extra digits carried) }
\end{aligned}
$$

For the y-components of the force:

$$
\begin{aligned}
\vec{F}_{1 y}+\vec{F}_{2 y}+\vec{F}_{3 y} & =0 \mathrm{~N} \\
\vec{F}_{3 y} & =-(-60.0 \mathrm{~N}) \sin 30.0^{\circ}-(50.0 \mathrm{~N}) \sin 60.0^{\circ} \\
& =30.0 \mathrm{~N}-43.30 \mathrm{~N} \\
\vec{F}_{3 y} & =-13.30 \mathrm{~N} \text { (two extra digits carried) }
\end{aligned}
$$

Construct the vector \vec{F}_{3} from its components:

$$
\begin{aligned}
\left|\vec{F}_{3}\right| & =\sqrt{\left(\vec{F}_{3 x}\right)^{2}+\left(\vec{F}_{3 y}\right)^{2}} \\
& =\sqrt{(76.96 \mathrm{~N})^{2}+(13.30 \mathrm{~N})^{2}} \\
\left|\vec{F}_{3}\right| & =78 \mathrm{~N} \\
\theta_{3} & =\tan ^{-1}\left(\frac{\vec{F}_{3 y}}{\vec{F}_{3 x}}\right) \\
& =\tan ^{-1}\left(\frac{13.30 \not Х}{76.96 \not X}\right) \\
\theta_{3} & =9.8^{\circ}
\end{aligned}
$$

Statement: The magnitude of the force is 78 N , at an angle [$9.8^{\circ} \mathrm{S}$].

Tutorial 2 Practice, pages 81-82

1. (a) Solutions may vary. Sample solution:

Given: $m_{1}=1.2 \mathrm{~kg} ; m_{2}=1.8 \mathrm{~kg} ; \vec{a}=1.2 \mathrm{~m} / \mathrm{s}^{2}$ [up]
Required: $\vec{F}_{1} ; \vec{F}_{2}$
Analysis: $\Sigma \vec{F}=m \vec{a}$

Solution: Equation for top block (mass m_{1}):

$$
\begin{aligned}
\Sigma \vec{F} & =m_{1} \vec{a} \\
\vec{F}_{1}-\vec{F}_{2}-m_{1} g & =m_{1} \vec{a} \\
\vec{F}_{1} & =\vec{F}_{2}+m_{1} g+m_{1} \vec{a} \\
\vec{F}_{1} & =\vec{F}_{2}+m_{1}(g+\vec{a}) \quad \text { (Equation 1) }
\end{aligned}
$$

Equation for bottom block (mass m_{2}):

$$
\begin{aligned}
\Sigma \vec{F} & =m_{2} \vec{a} \\
\vec{F}_{2}-m_{2} g & =m_{2} \vec{a} \\
\vec{F}_{2} & =m_{2} g+m_{2} \vec{a} \\
& =m_{2}(g+\vec{a}) \quad(\text { Equation 2) } \\
& =(1.8 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+1.2 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\vec{F}_{2} & =20 \mathrm{~N}
\end{aligned}
$$

To calculate \vec{F}_{1}, substitute Equation 2 into Equation 1:

$$
\begin{aligned}
\vec{F}_{1} & =\vec{F}_{2}+m_{1}(g+\vec{a}) \\
\vec{F}_{1} & =m_{2}(g+\vec{a})+m_{1}(g+\vec{a}) \\
& \left.=\left(m_{2}+m_{1}\right)(g+\vec{a}) \quad \text { Equation } 3\right) \\
& =(3.0 \mathrm{~kg})\left(11.0 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\vec{F}_{1} & =33 \mathrm{~N}
\end{aligned}
$$

Statement: The tension in the top string is 33 N , and the tension in the bottom string is 20 N .
(b) Given: $m_{1}=1.2 \mathrm{~kg} ; m_{2}=1.8 \mathrm{~kg}$; maximum string tension is 38 N

Required: maximum \vec{a} that will not break the string
Analysis: $\left(m_{2}+m_{1}\right)(g+a) \leq 38 \mathrm{~N}$
Solution: $\left(m_{2}+m_{1}\right)(g+\vec{a}) \leq 38 \mathrm{~N}$

$$
\begin{aligned}
g+\vec{a} & \leq \frac{38 \mathrm{~N}}{m_{2}+m_{1}} \\
\vec{a} & \leq \frac{38 \mathrm{~N}}{3.0 \mathrm{~kg}}-g \\
\vec{a} & \leq 12.67 \mathrm{~m} / \mathrm{s}^{2}-9.8 \mathrm{~m} / \mathrm{s}^{2} \\
\vec{a} & \leq 2.9 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Statement: The maximum acceleration of the elevator that will not break the strings is $2.9 \mathrm{~m} / \mathrm{s}^{2}$ [up].
2. (a) Given: $m=63 \mathrm{~kg} ; \vec{F}_{\mathrm{f}}=0 \mathrm{~N} ; \theta=14^{\circ}$ [above the horizontal]

Required: $\vec{F}_{\text {N }}$
Analysis: $\Sigma \vec{F}_{y}=0 \mathrm{~N}$
Solution: $\quad \Sigma \vec{F}_{y}=0 \mathrm{~N}$

$$
\begin{aligned}
\vec{F}_{\mathrm{N}}-\vec{F}_{\mathrm{g} \nu} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{N}} & =m g \cos \theta \\
& =(63 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \cos 14^{\circ} \\
\vec{F}_{\mathrm{N}} & =6.0 \times 10^{2} \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the normal force on the skier is $6.0 \times 10^{2} \mathrm{~N}$.
(b) Given: $\theta=14^{\circ}$ [above the horizontal]; $g=9.8 \mathrm{~m} / \mathrm{s}^{2}$

Required: $\vec{a}=|\vec{a}|$
Analysis: $\Sigma \vec{F}_{x}=m \vec{a}$. Choose $+x$-direction as the direction of acceleration, parallel to the hillside.
Solution: $\Sigma \vec{F}_{x}=m \vec{a}$

$$
\begin{aligned}
\vec{F}_{g x} & =m \vec{a} \\
\vec{a} & =\frac{\vec{F}_{\mathrm{gx}}}{m} \\
& =\frac{\not m g \sin \theta}{\not 2} \\
& =\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 14^{\circ} \\
\vec{a} & =2.4 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Statement: The magnitude of the skier's acceleration is $2.4 \mathrm{~m} / \mathrm{s}^{2}$.
3. Given: $\vec{a}=1.9 \mathrm{~m} / \mathrm{s}^{2}$ [down hill]; $\vec{F}_{\mathrm{f}}=0 \mathrm{~N}$

Required: θ
Analysis: $\vec{a}=g \sin \theta$
Solution: $\vec{a}=g \sin \theta$

$$
\begin{aligned}
\theta & =\sin ^{-1}\left(\frac{\vec{a}}{g}\right) \\
& =\sin ^{-1}\left(\frac{1.9 \mathrm{~m} / \mathrm{s}^{2}}{9.8 \mathrm{~m} / \mathrm{s}^{2}}\right) \\
\theta & =11^{\circ}
\end{aligned}
$$

Statement: The angle between the hill and the horizontal is 11°.
4. (a) Given: $\vec{F}_{\mathrm{a}}=82 \mathrm{~N}$ [right $\left.17^{\circ} \mathrm{up}\right] ; \vec{F}_{\mathrm{N}}=213 \mathrm{~N} ; \vec{a}=0.15 \mathrm{~m} / \mathrm{s}^{2}$ [right] Required: m
Analysis: $\Sigma \vec{F}_{y}=0 \mathrm{~N}$. Choose right and up as positive.
Solution: For the y-components of the forces:

$$
\begin{aligned}
\Sigma \vec{F}_{\mathrm{y}} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{N}}+\vec{F}_{\mathrm{a}} \sin \theta-m g & =0 \mathrm{~N} \\
m & =\frac{\vec{F}_{\mathrm{N}}+\vec{F}_{\mathrm{a}} \sin \theta}{g} \\
& =\frac{213 \mathrm{~N}+(82 \mathrm{~N}) \sin 17^{\circ}}{9.8 \mathrm{~m} / \mathrm{s}^{2}} \\
m & =24.18 \mathrm{~kg}(\text { two extra digits carried })
\end{aligned}
$$

Statement: The mass of the desk is 24 kg .
(b) Given: $\vec{F}_{\mathrm{a}}=82 \mathrm{~N}$ [right 17° up]; $\vec{F}_{\mathrm{N}}=213 \mathrm{~N} ; \vec{a}=0.15 \mathrm{~m} / \mathrm{s}^{2}$ [right]

Required: \vec{F}_{f}
Analysis: $\Sigma \vec{F}_{x}=m \vec{a}$
Solution: $\quad \Sigma \vec{F}_{x}=m \vec{a}$

$$
\begin{aligned}
\vec{F}_{\mathrm{ar}}-\vec{F}_{\mathrm{f}} & =m \vec{a} \\
\vec{F}_{\mathrm{f}} & =\vec{F}_{\mathrm{ar}}-m \vec{a} \\
& =(82 \mathrm{~N}) \cos 17^{\circ}-(24.18 \mathrm{~kg})\left(0.15 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\vec{F}_{\mathrm{f}} & =75 \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the friction force on the desk is 75 N .
5. (a) Given: $m_{1}=9.1 \mathrm{~kg} ; m_{2}=12 \mathrm{~kg} ; m_{3}=8.7 \mathrm{~kg} ; \vec{F}_{3}=29 \mathrm{~N}$ [right 23° up]

Required: \vec{a}
Analysis: $\Sigma F_{x}=m a$. Choose right and up as positive.
Solution: For the x-components of the force:

$$
\begin{aligned}
\Sigma \vec{F}_{x} & =m_{\mathrm{T}} \vec{a} \\
\vec{F}_{3 x} & =m_{\mathrm{T}} \vec{a} \\
\vec{a} & =\frac{\vec{F}_{3} \cos \theta}{m_{\mathrm{T}}} \\
& =\frac{(29 \mathrm{~N}) \cos 23^{\circ}}{29.8 \mathrm{~kg}} \\
\vec{a} & =0.8958 \mathrm{~m} / \mathrm{s}^{2} \text { (two extra digits carried) }
\end{aligned}
$$

Statement: The carts accelerate at $0.90 \mathrm{~m} / \mathrm{s}^{2}$ to the right.
(b) Given: $m_{3}=8.7 \mathrm{~kg} ; \vec{a}=0.8958 \mathrm{~m} / \mathrm{s}^{2}$

Required: \vec{F}_{1}
Analysis: $\Sigma \vec{F}_{x}=m \vec{a}$
Solution: For the x-components of the force:

$$
\begin{aligned}
\Sigma \vec{F}_{x} & =m_{3} \vec{a} \\
\vec{F}_{1} & =m_{3} \vec{a} \\
& =(8.7 \mathrm{~kg})\left(0.8958 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =7.793 \mathrm{~N}(\text { two extra digits carried }) \\
\vec{F}_{1} & =7.8 \mathrm{~N}
\end{aligned}
$$

Statement: The tension in the cord between m_{3} and m_{2} is 7.8 N .
(c) Given: $\vec{a}=0.90 \mathrm{~m} / \mathrm{s}^{2} ; \vec{F}_{1}=7.793 \mathrm{~N}$

Required: \vec{F}_{2}
Analysis: $\Sigma \vec{F}_{x}=m \vec{a}$
Solution: Using the x-components of the force:

$$
\begin{aligned}
\Sigma \vec{F}_{x} & =m_{2} \vec{a} \\
-\vec{F}_{1}+\vec{F}_{2} & =m_{2} \vec{a} \\
\vec{F}_{2} & =\vec{F}_{1}+(12 \mathrm{~kg})\left(0.8958 \mathrm{~m} / \mathrm{s}^{2}\right) \\
& =7.793 \mathrm{~N}+10.75 \mathrm{~N} \\
\vec{F}_{2} & =19 \mathrm{~N}
\end{aligned}
$$

Statement: The tension in the cord between m_{2} and m_{1} is 19 N .
6. (a) Given: $m_{\mathrm{A}}=4.2 \mathrm{~kg} ; m_{\mathrm{B}}=1.8 \mathrm{~kg} ; \theta=32^{\circ}$

Required: \vec{a}
Analysis: $\Sigma \vec{F}=m \vec{a}$
Solution: Equation for block A:

$$
\begin{aligned}
\Sigma \vec{F}_{y} & =m_{\mathrm{A}} \vec{a}_{y} \\
\vec{F}_{\mathrm{gA}}-\vec{F}_{\mathrm{T}} & =m_{\mathrm{A}} \vec{a} \\
m_{\mathrm{A}} g-\vec{F}_{\mathrm{T}} & =m_{\mathrm{A}} \vec{a} \quad \text { (Equation 1) }
\end{aligned}
$$

Equation for block B:

$$
\begin{aligned}
\Sigma \vec{F}_{x} & =m_{\mathrm{B}} \vec{a}_{x} \\
\vec{F}_{\mathrm{T}}+\vec{F}_{\mathrm{gB} x} & =m_{\mathrm{B}} \vec{a} \\
\vec{F}_{\mathrm{T}}-m_{\mathrm{B}} g \sin \theta & \left.=m_{\mathrm{A}} \vec{a} \quad \text { (Equation } 2\right)
\end{aligned}
$$

Solve for acceleration by adding equations (1) and (2):

$$
\begin{aligned}
\left(m_{\mathrm{A}} g-\vec{F}_{\mathrm{T}}\right)+\left(\vec{F}_{\mathrm{T}}-m_{\mathrm{B}} g \sin \theta\right) & =m_{\mathrm{A}} \vec{a}+m_{\mathrm{B}} \vec{a} \\
\left(m_{\mathrm{A}}-m_{\mathrm{B}} \sin \theta\right) g & =\left(m_{\mathrm{A}}+m_{\mathrm{B}}\right) \vec{a} \\
\vec{a} & =\frac{\left(m_{\mathrm{A}}-m_{\mathrm{B}} \sin \theta\right) g}{m_{\mathrm{A}}+m_{\mathrm{B}}} \\
& =\frac{\left(4.2 \mathrm{~kg}-(1.8 \mathrm{~kg}) \sin 32^{\circ}\right)\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{4.2 \mathrm{~kg}+1.8 \mathrm{~kg}} \\
& =5.302 \mathrm{~m} / \mathrm{s}^{2}(\text { two extra digits carried }) \\
\vec{a} & =5.3 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Statement: The blocks accelerate at $5.3 \mathrm{~m} / \mathrm{s}^{2}$.
(b) Given: $m_{\mathrm{A}}=4.2 \mathrm{~kg} ; m_{\mathrm{B}}=1.8 \mathrm{~kg} ; \theta=32^{\circ} ; \vec{a}=5.302 \mathrm{~m} / \mathrm{s}^{2}$

Required: tension in the string, F_{T}
Analysis: We can substitute the value of acceleration into either of the equations from part (a) to solve for F_{T}. We will use Equation (1) because it is a bit simpler.
Solution: $m_{\mathrm{A}} g-\vec{F}_{\mathrm{T}}=m_{\mathrm{A}} \vec{a}$

$$
\begin{aligned}
\vec{F}_{\mathrm{T}} & =m_{\mathrm{A}} g+m_{\mathrm{A}} \vec{a} \\
& =m_{\mathrm{A}}(g+\vec{a}) \\
& =(4.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}+5.302 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\vec{F}_{\mathrm{T}} & =19 \mathrm{~N}
\end{aligned}
$$

Statement: The tension in the string is 19 N .

Section 2.3 Questions, page 83

1. Given: $\vec{F}_{1}=30 \mathrm{~N}\left[\mathrm{E} 30^{\circ} \mathrm{N}\right] ; \vec{F}_{2}=40 \mathrm{~N}\left[\mathrm{E} 50^{\circ} \mathrm{S}\right]$

Required: $\Sigma \vec{F}$
Analysis: $|\Sigma \vec{F}|=\sqrt{\left(\Sigma \vec{F}_{x}\right)^{2}+\left(\Sigma \vec{F}_{y}\right)^{2}} ; \theta=\tan ^{-1}\left(\frac{\Sigma \vec{F}_{y}}{\Sigma \vec{F}_{x}}\right)$. Choose east and north as positive.
Solution: For the x-components of the force:

$$
\begin{aligned}
\Sigma \vec{F}_{x} & =\vec{F}_{1 x}+\vec{F}_{2 x} \\
& =(30 \mathrm{~N}) \cos 30^{\circ}+(40 \mathrm{~N}) \cos 50^{\circ} \\
& =25.98 \mathrm{~N}+25.71 \mathrm{~N} \\
\Sigma \vec{F}_{x} & =51.69 \mathrm{~N}(\text { two extra digits carried })
\end{aligned}
$$

For the y-components of the force:

$$
\begin{aligned}
\Sigma \vec{F}_{y} & =\vec{F}_{1 y}+\vec{F}_{2 y} \\
& =(30 \mathrm{~N}) \sin 30^{\circ}+(-40 \mathrm{~N}) \sin 50^{\circ} \\
& =15 \mathrm{~N}-30.64 \mathrm{~N} \\
\Sigma \vec{F}_{y} & =-15.64 \mathrm{~N} \text { (two extra digits carried) }
\end{aligned}
$$

Construct $\Sigma \vec{F}$:

$$
\begin{aligned}
& |\Sigma \vec{F}|=\sqrt{\left(\Sigma \vec{F}_{x}\right)^{2}+\left(\Sigma \vec{F}_{y}\right)^{2}} \\
& =\sqrt{(51.69 \mathrm{~N})^{2}+(15.64 \mathrm{~N})^{2}} \\
& =54.00 \mathrm{~N} \\
& |\Sigma \vec{F}|=54 \mathrm{~N} \\
& \theta=\tan ^{-1}\left(\frac{\Sigma \vec{F}_{y}}{\Sigma \vec{F}_{x}}\right) \\
& =\tan ^{-1}\left(\frac{15.64 X}{51.69 X}\right) \\
& \theta=17^{\circ}
\end{aligned}
$$

Statement: The total force exerted by the ropes on the skater is $54 \mathrm{~N}\left[\mathrm{E} 17^{\circ} \mathrm{S}\right]$.
2. Given: $m=45 \mathrm{~kg}$

Required: $\vec{F}_{\mathrm{T} 1} ; \vec{F}_{\mathrm{T} 2} ; \vec{F}_{\mathrm{T} 3}$
Analysis: $\Sigma \vec{F}=0 \mathrm{~N}$
Solution: For the forces on the mass,

$$
\begin{aligned}
\vec{F}_{\mathrm{T} 2}-m g & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{T} 2} & =m g
\end{aligned}
$$

For the y-components of the force:

$$
\begin{aligned}
\vec{F}_{\mathrm{T} 2 y}+\vec{F}_{\mathrm{T} 3 y} & =0 \mathrm{~N} \\
-\vec{F}_{\mathrm{T} 2}+\vec{F}_{\mathrm{T} 3} \sin \theta & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{T} 3} & =\frac{\vec{F}_{\mathrm{T} 2}}{\sin \theta} \\
\vec{F}_{\mathrm{T} 3} & =\frac{m g}{\sin \theta}
\end{aligned}
$$

For the x-components of the force:

$$
\begin{aligned}
\vec{F}_{\mathrm{T} 1 x}+\vec{F}_{\mathrm{T} 3 x} & =0 \mathrm{~N} \\
-\vec{F}_{\mathrm{T} 1}+\vec{F}_{\mathrm{T} 3} \cos \theta & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{T} 1} & =\vec{F}_{\mathrm{T} 3} \cos \theta \\
& =\left(\frac{m g}{\sin \theta}\right) \cos \theta \\
\vec{F}_{\mathrm{T} 1} & =\frac{m g}{\tan \theta}
\end{aligned}
$$

Calculate the tensions in the three cables.

$$
\begin{aligned}
\vec{F}_{\mathrm{T} 1} & =\frac{m g}{\tan \theta} \\
& =\frac{45 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\tan 60.0^{\circ}} \\
\vec{F}_{\mathrm{T} 1} & =250 \mathrm{~N} \\
\vec{F}_{\mathrm{T} 2} & =m g \\
& =45 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\vec{F}_{\mathrm{T} 2} & =440 \mathrm{~N} \\
\vec{F}_{\mathrm{T} 3} & =\frac{m g}{\sin \theta} \\
& =\frac{45 \mathrm{~kg}\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{\sin 60.0^{\circ}} \\
\vec{F}_{\mathrm{T} 3} & =510 \mathrm{~N}
\end{aligned}
$$

Statement: $\vec{F}_{\mathrm{T} 1}$ is $250 \mathrm{~N}, \vec{F}_{\mathrm{T} 2}$ is 440 N , and $\vec{F}_{\mathrm{T} 3}$ is 510 N .
3. Given: $m=2.5 \mathrm{~kg} ; \vec{F}_{\text {air }}=12 \mathrm{~N}[$ right $] ; \Sigma \vec{F}=0 \mathrm{~N}$

Required: θ
Analysis: $\Sigma \vec{F}=0 \mathrm{~N} ;\left|\overrightarrow{\mathrm{F}}_{\mathrm{T}}\right|=\sqrt{\left(\vec{F}_{\mathrm{T} x}\right)^{2}+\left(\vec{F}_{\mathrm{T} y}\right)^{2}} ; \theta=\tan ^{-1}\left(\frac{\vec{F}_{\mathrm{T} y}}{\vec{F}_{\mathrm{T} x}}\right)$. Choose right and up as positive.
Solution: For the x-components of the force:

$$
\begin{aligned}
\Sigma \vec{F}_{x} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{T} x}+\vec{F}_{\mathrm{air}} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{T} x} & =-\vec{F}_{\mathrm{air}} \\
\vec{F}_{\mathrm{T} x} & =-12 \mathrm{~N}
\end{aligned}
$$

For the y-components of the force:

$$
\begin{aligned}
\Sigma \vec{F}_{y} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{T} y}-m g & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{T} y} & =m g \\
& =(2.5 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \\
\vec{F}_{\mathrm{T} x} & =24.5 \mathrm{~N} \text { (one extra digit carried) }
\end{aligned}
$$

Construct \vec{F}_{T} from its components:

$$
\begin{aligned}
\begin{aligned}
&\left|\vec{F}_{\mathrm{T}}\right|=\sqrt{\left(\vec{F}_{\mathrm{Tx}}\right)^{2}+\left(\vec{F}_{\mathrm{T} y}\right)^{2}} \\
&=\sqrt{(12 \mathrm{~N})^{2}+(24.5 \mathrm{~N})^{2}} \\
& \left\lvert\, \begin{aligned}
\left|\vec{F}_{\mathrm{T}}\right| & =27 \mathrm{~N}
\end{aligned}\right. \\
& \theta=\tan ^{-1}\left(\frac{\vec{F}_{\mathrm{T} y}}{\vec{F}_{\mathrm{Tx}}}\right) \\
&=\tan ^{-1}\left(\frac{24.5 \not X}{12 \not X}\right) \\
& \theta=64^{\circ}
\end{aligned}
\end{aligned}
$$

Statement: The tension is the rope is 27 N . The rope makes an angle of 64° with the horizontal.
4. (a) Given: $\theta=15^{\circ} ; m=1.41 \times 10^{3} \mathrm{~kg} ; \Sigma \vec{F}=0 \mathrm{~N}$

Required: FBD showing the forces on the car
Analysis: Choose [down the hill] as the positive x-direction and [up perpendicular to hill] as the positive y-direction.
Solution: The FBD for the car is shown below.

(b) Given: $\Sigma \vec{F}=0 \mathrm{~N}$

Required: equations for the conditions for static equilibrium along horizontal and vertical directions
Analysis: $\Sigma \vec{F}_{x}=0 \mathrm{~N} ; \Sigma \vec{F}_{y}=0 \mathrm{~N}$
Solution: For the x-components of the force (horizontal):

$$
\begin{aligned}
\Sigma \vec{F}_{x} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{g} x}-\vec{F}_{\mathrm{T}} & =0 \mathrm{~N} \\
m g \sin \theta-\vec{F}_{\mathrm{T}} & =0 \mathrm{~N}
\end{aligned}
$$

For the y-components of the force (vertical):

$$
\begin{aligned}
\Sigma \vec{F}_{y} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{N}}+\vec{F}_{\mathrm{g} v} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{N}}-m g \cos \theta & =0 \mathrm{~N}
\end{aligned}
$$

(c) Given: $\theta=15^{\circ} ; m=1.41 \times 10^{3} \mathrm{~kg} ; \Sigma \vec{F}=0 \mathrm{~N}$

Required: F_{T}
Analysis: $m g \sin \theta-\vec{F}_{\mathrm{T}}=0 \mathrm{~N}$
Solution: $m g \sin \theta-\vec{F}_{\mathrm{T}}=0 \mathrm{~N}$

$$
\begin{aligned}
\vec{F}_{\mathrm{T}} & =m g \sin \theta \\
& =(1410 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 15^{\circ} \\
\vec{F}_{\mathrm{T}} & =3.6 \times 10^{3} \mathrm{~N}
\end{aligned}
$$

Statement: The tension in the cable is $3.6 \times 10^{3} \mathrm{~N}$.
5. (a) Given: $\vec{F}_{\mathrm{a}}=42 \mathrm{~N}$ [right 35° down]; $m=18 \mathrm{~kg} ; \Delta d=5.0 \mathrm{~m}$

Required: FBD for the mower
Analysis: Choose forward and up as positive
Solution: The FBD for the lawn mower is shown below.

(b) Given: $\vec{F}_{\mathrm{a}}=42 \mathrm{~N}\left[\right.$ right 35° down] $; m=18 \mathrm{~kg} ; \Delta d=5.0 \mathrm{~m}$

Required: a
Analysis: $\Sigma \vec{F}_{x}=m \vec{a}$

Solution: $\Sigma \vec{F}_{x}=m \vec{a}$

$$
\begin{aligned}
\vec{F}_{\mathrm{ax}} & =m \vec{a} \\
\vec{a} & =\frac{\vec{F}_{\mathrm{ax}}}{m} \\
& =\frac{(42 \mathrm{~N}) \cos 35^{\circ}}{18 \mathrm{~kg}} \\
& =1.911 \mathrm{~m} / \mathrm{s}^{2} \text { (two extra digits carried) } \\
\vec{a} & =1.9 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
$$

Statement: The acceleration of the mower is $1.9 \mathrm{~m} / \mathrm{s}^{2}$ [forward].
(c) Given: $\vec{F}_{\mathrm{a}}=42 \mathrm{~N}$ [right 35° down]; $m=18 \mathrm{~kg}$

Required: \vec{F}_{N}
Analysis: Use the FBD to identify the forces with vertical components. Use $\Sigma \vec{F}_{y}=0 \mathrm{~N}$ to solve for the normal force.
Solution: $\quad \Sigma \vec{F}_{y}=0 \mathrm{~N}$

$$
\begin{aligned}
\vec{F}_{\mathrm{N}}+\vec{F}_{\mathrm{a} y}-m g & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{N}} & =m g-\vec{F}_{\mathrm{a} y} \\
& =(18 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)-(-42 \mathrm{~N}) \sin 35^{\circ} \\
& =176.4 \mathrm{~N}+24.09 \mathrm{~N} \\
\vec{F}_{\mathrm{N}} & =200 \mathrm{~N}
\end{aligned}
$$

Statement: The normal force is $2.0 \times 10^{2} \mathrm{~N}$ [up].
(d) Given: $\Delta d=5.0 \mathrm{~m} ; \vec{a}=1.911 \mathrm{~m} / \mathrm{s}^{2}$

Required: \vec{v}_{f}
Analysis: $v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 \vec{a} \Delta d$
Solution: $v_{\mathrm{f}}^{2}=v_{\mathrm{i}}^{2}+2 \vec{a} \Delta d$

$$
\begin{aligned}
& v_{\mathrm{f}}^{2}=2\left(1.911 \mathrm{~m} / \mathrm{s}^{2}\right)(5.0 \mathrm{~m}) \\
& v_{\mathrm{f}}=4.4 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Statement: The velocity of the mower when it reaches the lawn is $4.4 \mathrm{~m} / \mathrm{s}$ [forward].
6. (a) Given: $m=1.3 \mathrm{~kg} ; \theta=25^{\circ} ; \Sigma \vec{F}=0 \mathrm{~N}$

Required: \vec{F}_{a}
Analysis: $\Sigma \vec{F}_{x}=0 \mathrm{~N}$

$$
\text { Solution: } \begin{aligned}
\Sigma \vec{F}_{x} & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{a}}-m g \sin \theta & =0 \mathrm{~N} \\
\vec{F}_{\mathrm{a}} & =m g \sin \theta \\
& =(1.3 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 25^{\circ} \\
\vec{F}_{\mathrm{a}} & =5.4 \mathrm{~N}
\end{aligned}
$$

Statement: A force of 5.4 N is required to pull the cart up the ramp at a constant velocity.
(b) Given: $m=1.3 \mathrm{~kg} ; \theta=25^{\circ} ; \vec{a}=2.2 \mathrm{~m} / \mathrm{s}^{2}$ [up the ramp]

Required: \vec{F}_{a}
Analysis: $\Sigma \vec{F}_{x}=m \vec{a}_{x}$
Solution: $\quad \Sigma \vec{F}_{x}=m \vec{a}$

$$
\begin{aligned}
\vec{F}_{\mathrm{a}}-m g \sin \theta & =m \vec{a} \\
\vec{F}_{\mathrm{a}} & =m \vec{a}+m g \sin \theta \\
& =(1.3 \mathrm{~kg})\left(2.2 \mathrm{~m} / \mathrm{s}^{2}\right)+(1.3 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right) \sin 25^{\circ} \\
& =2.86 \mathrm{~N}+5.384 \mathrm{~N} \\
\vec{F}_{\mathrm{a}} & =8.2 \mathrm{~N}
\end{aligned}
$$

Statement: A force of 8.2 N is required to pull the cart up the ramp at an acceleration of $2.2 \mathrm{~m} / \mathrm{s}$.

