Section 2.3: Applying Newton's Laws of Motion Tutorial 1 Practice, page 79

1. Given: $\vec{F}_{gB} = 2.8 \text{ N}$; $\vec{F}_{gA} = 6.5 \text{ N}$; $\vec{F}_{f} = 1.4 \text{ N}$ (a) Required: F_1 Analysis: $\Sigma \vec{F} = 0$ N Solution: The FBD for block B is shown below. **≜**F, Equation for block B: $\Sigma \vec{F} = 0 \text{ N}$ $\vec{F}_{1} - \vec{F}_{gB} = 0 \text{ N}$ $\vec{F}_1 = \vec{F}_{\rm gB}$ $\vec{F}_1 = 2.8 \text{ N}$ Statement: The tension in the vertical rope is 2.8 N. **(b) Given:** $\vec{F}_{gA} = 6.5 \text{ N}$; $\vec{F}_{f} = 1.4 \text{ N}$ **Required:** \vec{F}_2 ; \vec{F}_N Analysis: $\Sigma \vec{F} = 0$ N Solution: The FBD for block A is shown below. **≜**F_N , F₁ Γ_τ Equations for block A: $\Sigma \vec{F} = 0 \text{ N}$ $\Sigma \vec{F}_{r} = 0 \text{ N}$ $\vec{F}_{\rm N} - \vec{F}_{\rm gA} = 0 \ \rm N$ $\vec{F}_2 - \vec{F}_f = 0 \text{ N}$ $\vec{F}_{\rm N} = \vec{F}_{\rm gA}$ $\vec{F}_2 = \vec{F}_f$ $\vec{F}_{2} = 1.4 \text{ N}$ $\vec{F}_{N} = 6.5 \text{ N}$

Statement: The tension in the horizontal rope is 1.4 N. The normal force acting on block A is 6.5 N.

(c) Given: $\vec{F}_2 = 1.4 \text{ N}$ Required: \vec{F}_3 Analysis: $\Sigma \vec{F} = 0 \text{ N}$ Solution: The FBD for point P is shown below.

Equations for point P. For the *x*-components of the force:

$$\Sigma F_x = 0 \text{ N}$$
$$\vec{F}_{3x} - \vec{F}_2 = 0 \text{ N}$$
$$\vec{F}_{3x} = \vec{F}_2$$
$$\vec{F}_{3x} = 1.4 \text{ N}$$

For the *y*-components of the force:

$$\Sigma \vec{F} = 0 \text{ N}$$
$$\vec{F}_{3y} - \vec{F}_1 = 0 \text{ N}$$
$$\vec{F}_{3y} = \vec{F}_1$$
$$\vec{F}_{3y} = 2.8 \text{ N}$$

Construct the vector \vec{F}_3 from its components:

$$|\vec{F}_{3}| = \sqrt{(\vec{F}_{3x})^{2} + (\vec{F}_{3y})^{2}}$$
$$= \sqrt{(1.4 \text{ N})^{2} + (2.8 \text{ N})^{2}}$$
$$|\vec{F}_{3}| = 3.1 \text{ N}$$
$$\theta = \tan^{-1} \left(\frac{\vec{F}_{3y}}{\vec{F}_{3x}}\right)$$
$$= \tan^{-1} \left(\frac{2.8 \text{ N}}{1.4 \text{ N}}\right)$$
$$\theta = 63^{\circ}$$

Statement: The tension in the third rope is 3.1 N [right 63° up].

2. Given: m = 62 kg; $\vec{F}_{T} = 7.1 \times 10^{2} \text{ N}$ [right 32° up] Required: \vec{F}_{W} Analysis: $\Sigma \vec{F} = 0 \text{ N}$ Balance the *x*-components of the forces: $\Sigma \vec{F}_{x} = 0 \text{ N}$ $\vec{F}_{Wx} + \vec{F}_{T} \cos\theta = 0 \text{ N}$ $\vec{F}_{Wx} = -\vec{F}_{T} \cos\theta$ $= -(710 \text{ N})\cos 32^{\circ}$ $\vec{F}_{Wx} = -602.1 \text{ N}$ (two extra digits carried) Balance the *y*-components of the forces: $\Sigma \vec{F}_{y} = 0 \text{ N}$ $\vec{F}_{Wy} + \vec{F}_{Ty} - \vec{F}_{g} = 0 \text{ N}$ $\vec{F}_{Wy} = -\vec{F}_{T} \sin\theta + mg$ $\vec{F}_{Wy} = -(710 \text{ N})\sin 32^{\circ} + (62 \text{ kg})(9.8 \text{m/s}^{2})$ = -276.2 N + 607.6 N

$$= -376.2 \text{ N} + 607.6 \text{ N}$$

 $\vec{F}_{wy} = 231.4 \text{ N}$ (two extra digits carried)

Construct the vector \vec{F}_{w} from its components:

$$\left| \vec{F}_{W} \right| = \sqrt{(\vec{F}_{Wx})^{2} + (\vec{F}_{Wy})^{2}}$$

= $\sqrt{(602.1 \text{ N})^{2} + (231.4 \text{ N})^{2}}$ (two extra digits carried)
 $\left| \vec{F}_{W} \right| = 6.5 \times 10^{2} \text{ N}$

$$\theta = \tan^{-1} \left(\frac{F_{Wy}}{F_{Wx}} \right)$$
$$= \tan^{-1} \left(\frac{231.4 \text{ N}}{602.1 \text{ N}} \right)$$
$$\theta = 21^{\circ}$$

Statement: The force exerted by the wall on the climber's feet is 6.5×10^2 N [left 21° up].

3. Given: $\vec{F}_1 = 60.0 \text{ N} [\text{E } 30.0^\circ \text{ S}]; \vec{F}_2 = 50.0 \text{ N} [\text{E } 60.0^\circ \text{ N}]; \Sigma \vec{F} = 0 \text{ N}$ **Required:** \vec{F}_3

Analysis: $\Sigma \vec{F} = 0$ N; $\vec{F}_1 + \vec{F}_2 + \vec{F}_3 = 0$ N. Choose east and north as positive. **Solution:** For the *x*-components of the force:

$$\vec{F}_{1x} + \vec{F}_{2x} + \vec{F}_{3x} = 0N$$

$$\vec{F}_{3x} = -(60.0 \text{ N})\cos 30.0^{\circ} - (50.0 \text{ N})\cos 60.0^{\circ}$$

$$= -51.96 \text{ N} - 25.0 \text{ N}$$

$$\vec{F}_{3x} = -76.96 \text{ N} \text{ (two extra digits carried)}$$

For the *y*-components of the force:

$$\vec{F}_{1y} + \vec{F}_{2y} + \vec{F}_{3y} = 0 \text{ N}$$

 $\vec{F}_{3y} = -(-60.0 \text{ N}) \sin 30.0^{\circ} - (50.0 \text{ N}) \sin 60.0^{\circ}$
 $= 30.0 \text{ N} - 43.30 \text{ N}$
 $\vec{F}_{3y} = -13.30 \text{ N}$ (two extra digits carried)

Construct the vector \vec{F}_3 from its components:

$$\begin{aligned} \left| \vec{F}_{3} \right| &= \sqrt{(\vec{F}_{3x})^{2} + (\vec{F}_{3y})^{2}} \\ &= \sqrt{(76.96 \text{ N})^{2} + (13.30 \text{ N})^{2}} \\ \left| \vec{F}_{3} \right| &= 78 \text{ N} \end{aligned}$$
$$\theta_{3} &= \tan^{-1} \left(\frac{\vec{F}_{3y}}{\vec{F}_{3x}} \right) \\ &= \tan^{-1} \left(\frac{13.30 \text{ N}}{76.96 \text{ N}} \right) \\ \theta_{3} &= 9.8^{\circ} \end{aligned}$$

Statement: The magnitude of the force is 78 N, at an angle [W 9.8° S].

Tutorial 2 Practice, pages 81-82

1. (a) Solutions may vary. Sample solution: Given: $m_1 = 1.2 \text{ kg}; m_2 = 1.8 \text{ kg}; \vec{a} = 1.2 \text{ m/s}^2 \text{ [up]}$ Required: $\vec{F}_1; \vec{F}_2$ Analysis: $\Sigma \vec{F} = m\vec{a}$ **Solution:** Equation for top block (mass *m*₁):

$$\Sigma F = m_1 \vec{a}$$

$$\vec{F}_1 - \vec{F}_2 - m_1 g = m_1 \vec{a}$$

$$\vec{F}_1 = \vec{F}_2 + m_1 g + m_1 \vec{a}$$

$$\vec{F}_1 = \vec{F}_2 + m_1 (g + \vec{a})$$
 (Equation 1)

Equation for bottom block (mass *m*₂):

$$\Sigma F = m_2 \vec{a}$$

$$\vec{F}_2 - m_2 g = m_2 \vec{a}$$

$$\vec{F}_2 = m_2 g + m_2 \vec{a}$$

$$= m_2 (g + \vec{a}) \text{ (Equation 2)}$$

$$= (1.8 \text{ kg})(9.8 \text{ m/s}^2 + 1.2 \text{ m/s}^2)$$

$$\vec{F}_2 = 20 \text{ N}$$

To calculate \vec{F}_1 , substitute Equation 2 into Equation 1:

$$\vec{F}_{1} = \vec{F}_{2} + m_{1}(g + \vec{a})$$

$$\vec{F}_{1} = m_{2}(g + \vec{a}) + m_{1}(g + \vec{a})$$

$$= (m_{2} + m_{1})(g + \vec{a}) \quad \text{(Equation 3)}$$

$$= (3.0 \text{ kg})(11.0 \text{ m/s}^{2})$$

$$\vec{F}_{1} = 33 \text{ N}$$

Statement: The tension in the top string is 33 N, and the tension in the bottom string is 20 N. (b) Given: $m_1 = 1.2 \text{ kg}; m_2 = 1.8 \text{ kg};$ maximum string tension is 38 N

Required: maximum \vec{a} that will not break the string

Analysis: $(m_2 + m_1)(g + a) \le 38$ N

Solution: $(m_2 + m_1)(g + \vec{a}) \le 38 \text{ N}$

$$g + \vec{a} \le \frac{38 \text{ N}}{m_2 + m_1}$$
$$\vec{a} \le \frac{38 \text{ N}}{3.0 \text{ kg}} - g$$
$$\vec{a} \le 12.67 \text{ m/s}^2 - 9.8 \text{ m/s}^2$$
$$\vec{a} \le 2.9 \text{ m/s}^2$$

Statement: The maximum acceleration of the elevator that will not break the strings is 2.9 m/s^2 [up].

2. (a) Given: m = 63 kg; $\vec{F}_{f} = 0 \text{ N}$; $\theta = 14^{\circ}$ [above the horizontal] Required: \vec{F}_{N} Analysis: $\Sigma \vec{F}_{y} = 0 \text{ N}$ Solution: $\Sigma \vec{F}_{y} = 0 \text{ N}$ $\vec{F}_{N} - \vec{F}_{gy} = 0 \text{ N}$ $\vec{F}_{N} - \vec{F}_{gy} = 0 \text{ N}$ $\vec{F}_{N} = mg \cos \theta$ $= (63 \text{ kg})(9.8 \text{ m/s}^{2})\cos 14^{\circ}$ $\vec{F}_{N} = 6.0 \times 10^{2} \text{ N}$

Statement: The magnitude of the normal force on the skier is 6.0×10^2 N. (b) Given: $\theta = 14^\circ$ [above the horizontal]; g = 9.8 m/s² Required: $\vec{a} = |\vec{a}|$

Analysis: $\Sigma \vec{F}_x = m\vec{a}$. Choose +x-direction as the direction of acceleration, parallel to the hillside. Solution: $\Sigma \vec{F} = m\vec{a}$

Solution:
$$2F_x = ma$$

 $\vec{F}_{gx} = m\vec{a}$
 $\vec{a} = \frac{\vec{F}_{gx}}{m}$
 $= \frac{mg\sin\theta}{m}$
 $= (9.8 \text{ m/s}^2)\sin 14^\circ$
 $\vec{a} = 2.4 \text{ m/s}^2$
Statement: The magnitude of the skier's acceleration is 2.4 m/s².
3. Given: $\vec{a} = 1.9 \text{ m/s}^2$ [down hill]; $\vec{F}_f = 0 \text{ N}$

Required: θ

Analysis: $\vec{a} = g \sin \theta$ Solution: $\vec{a} = g \sin \theta$

$$\theta = \sin^{-1} \left(\frac{\vec{a}}{g} \right)$$
$$= \sin^{-1} \left(\frac{1.9 \text{ m/s}^2}{9.8 \text{ m/s}^2} \right)$$
$$\theta = 11^\circ$$

Statement: The angle between the hill and the horizontal is 11°.

4. (a) Given: $\vec{F}_a = 82$ N [right 17° up]; $\vec{F}_N = 213$ N; $\vec{a} = 0.15$ m/s² [right] Required: *m* Analysis: $\Sigma \vec{F}_v = 0$ N. Choose right and up as positive.

Solution: For the *y*-components of the forces:

$$\Sigma \vec{F}_{y} = 0 \text{ N}$$

$$\vec{F}_{N} + \vec{F}_{a} \sin\theta - mg = 0 \text{ N}$$

$$m = \frac{\vec{F}_{N} + \vec{F}_{a} \sin\theta}{g}$$

$$= \frac{213 \text{ N} + (82 \text{ N}) \sin 17^{\circ}}{9.8 \text{ m/s}^{2}}$$

$$m = 24.18 \text{ kg} \text{ (two extra digits carried)}$$

Statement: The mass of the desk is 24 kg.

(b) Given: $\vec{F}_{a} = 82$ N [right 17° up]; $\vec{F}_{N} = 213$ N; $\vec{a} = 0.15$ m/s² [right] Required: \vec{F}_{f} Analysis: $\Sigma \vec{F}_{x} = m\vec{a}$ Solution: $\Sigma \vec{F}_{x} = m\vec{a}$ $\vec{F}_{ax} - \vec{F}_{f} = m\vec{a}$ $\vec{F}_{f} = \vec{F}_{ax} - m\vec{a}$ $= (82 \text{ N})\cos 17^{\circ} - (24.18 \text{ kg})(0.15 \text{ m/s}^{2})$ $\vec{F}_{e} = 75 \text{ N}$

Statement: The magnitude of the friction force on the desk is 75 N.

5. (a) Given: $m_1 = 9.1 \text{ kg}; m_2 = 12 \text{ kg}; m_3 = 8.7 \text{ kg}; \vec{F}_3 = 29 \text{ N} \text{ [right } 23^\circ \text{ up]}$ Required: \vec{a}

Analysis: $\Sigma F_x = ma$. Choose right and up as positive.

Solution: For the *x*-components of the force:

$$\Sigma F_x = m_{\rm T} \vec{a}$$
$$\vec{F}_{3x} = m_{\rm T} \vec{a}$$
$$\vec{a} = \frac{\vec{F}_3 \cos\theta}{m_{\rm T}}$$
$$= \frac{(29 \text{ N})\cos 23^\circ}{29.8 \text{ kg}}$$

 $\vec{a} = 0.8958 \text{ m/s}^2$ (two extra digits carried)

Statement: The carts accelerate at 0.90 m/s^2 to the right.

(b) Given: $m_3 = 8.7 \text{ kg}; \vec{a} = 0.8958 \text{ m/s}^2$ **Required:** \vec{F}_1 Analysis: $\Sigma \vec{F}_{x} = m\vec{a}$ **Solution:** For the *x*-components of the force: $\Sigma \vec{F}_{x} = m_{2}\vec{a}$ $\vec{F}_1 = m_2 \vec{a}$ $=(8.7 \text{ kg})(0.8958 \text{ m/s}^2)$ = 7.793 N (two extra digits carried) $\vec{F}_1 = 7.8 \text{ N}$ **Statement:** The tension in the cord between m_3 and m_2 is 7.8 N. (c) Given: $\vec{a} = 0.90 \text{ m/s}^2$; $\vec{F}_1 = 7.793 \text{ N}$ **Required:** \vec{F}_2 Analysis: $\Sigma \vec{F}_{r} = m\vec{a}$ **Solution:** Using the *x*-components of the force: $\Sigma \vec{F}_{\mu} = m_{2}\vec{a}$ $-\vec{F}_1 + \vec{F}_2 = m_2 \vec{a}$ $\vec{F}_2 = \vec{F}_1 + (12 \text{ kg})(0.8958 \text{ m/s}^2)$ = 7.793 N + 10.75 N $\vec{F}_{2} = 19 \text{ N}$ **Statement:** The tension in the cord between m_2 and m_1 is 19 N. 6. (a) Given: $m_A = 4.2 \text{ kg}; m_B = 1.8 \text{ kg}; \theta = 32^\circ$ **Required:** \vec{a} Analysis: $\Sigma \vec{F} = m\vec{a}$ Solution: Equation for block A: $\Sigma \vec{F}_{v} = m_{A} \vec{a}_{v}$ $\vec{F}_{_{\mathrm{g}\mathrm{A}}} - \vec{F}_{_{\mathrm{T}}} = m_{_{\mathrm{A}}}\vec{a}$ $m_{A}g - \vec{F}_{T} = m_{A}\vec{a}$ (Equation 1) Equation for block B: $\Sigma \vec{F}_{r} = m_{\rm B} \vec{a}_{r}$ $\vec{F}_{\rm T} + \vec{F}_{{}_{\rm gBx}} = m_{\rm B}\vec{a}$ $\vec{F}_{\rm T} - m_{\rm B}g\sin\theta = m_{\rm A}\vec{a}$ (Equation 2)

Solve for acceleration by adding equations (1) and (2):

$$(m_{A}g - \vec{F}_{T}) + (\vec{F}_{T} - m_{B}g\sin\theta) = m_{A}\vec{a} + m_{B}\vec{a}$$

$$(m_{A} - m_{B}\sin\theta)g = (m_{A} + m_{B})\vec{a}$$

$$\vec{a} = \frac{(m_{A} - m_{B}\sin\theta)g}{m_{A} + m_{B}}$$

$$= \frac{(4.2 \text{ kg} - (1.8 \text{ kg})\sin 32^{\circ})(9.8 \text{ m/s}^{2})}{4.2 \text{ kg} + 1.8 \text{ kg}}$$

$$= 5.302 \text{ m/s}^{2} \text{ (two extra digits carried)}$$

$$\vec{a} = 5.3 \text{ m/s}^{2}$$

Statement: The blocks accelerate at 5.3 m/s^2 .

(b) Given: $m_{\rm A} = 4.2 \text{ kg}; m_{\rm B} = 1.8 \text{ kg}; \theta = 32^{\circ}; \ \vec{a} = 5.302 \text{ m/s}^2$

Required: tension in the string, $F_{\rm T}$

Analysis: We can substitute the value of acceleration into either of the equations from part (a) to solve for F_{T} . We will use Equation (1) because it is a bit simpler.

Solution:
$$m_A g - \vec{F}_T = m_A \vec{a}$$

 $\vec{F}_T = m_A g + m_A \vec{a}$
 $= m_A (g + \vec{a})$
 $= (4.2 \text{ kg})(9.8 \text{ m/s}^2 + 5.302 \text{ m/s}^2)$
 $\vec{F}_T = 19 \text{ N}$

Statement: The tension in the string is 19 N.

Section 2.3 Questions, page 83

1. Given: $\vec{F}_1 = 30 \text{ N} [\text{E } 30^\circ \text{ N}]; \vec{F}_2 = 40 \text{ N} [\text{E } 50^\circ \text{ S}]$ Required: $\Sigma \vec{F}$

Analysis:
$$\left|\Sigma\vec{F}\right| = \sqrt{(\Sigma\vec{F}_x)^2 + (\Sigma\vec{F}_y)^2}$$
; $\theta = \tan^{-1}\left(\frac{\Sigma\vec{F}_y}{\Sigma\vec{F}_x}\right)$. Choose east and north as positive.

Solution: For the *x*-components of the force:

$$\Sigma \vec{F}_{x} = \vec{F}_{1x} + \vec{F}_{2x}$$

= (30 N)cos 30° + (40 N)cos 50°
= 25.98 N + 25.71 N
 $\Sigma \vec{F}_{x} = 51.69$ N (two extra digits carried)

For the *y*-components of the force:

$$\Sigma \vec{F}_{y} = \vec{F}_{1y} + \vec{F}_{2y}$$

= (30 N)sin 30° + (-40 N)sin 50°
= 15 N - 30.64 N
$$\Sigma \vec{F}_{y} = -15.64 N \text{ (two extra digits carried)}$$

Construct $\Sigma \vec{F}$:

$$\begin{aligned} \left| \Sigma \vec{F} \right| &= \sqrt{(\Sigma \vec{F}_x)^2 + (\Sigma \vec{F}_y)^2} \\ &= \sqrt{(51.69 \text{ N})^2 + (15.64 \text{ N})^2} \\ &= 54.00 \text{ N} \\ \left| \Sigma \vec{F} \right| &= 54 \text{ N} \end{aligned}$$
$$\theta &= \tan^{-1} \left(\frac{\Sigma \vec{F}_y}{\Sigma \vec{F}_x} \right) \\ &= \tan^{-1} \left(\frac{15.64 \text{ N}}{51.69 \text{ N}} \right) \end{aligned}$$

$$\theta = 17^{\circ}$$

Statement: The total force exerted by the ropes on the skater is 54 N [E 17° S].

2. Given: m = 45 kgRequired: \vec{F}_{T1} ; \vec{F}_{T2} ; \vec{F}_{T3} Analysis: $\Sigma \vec{F} = 0 \text{ N}$ Solution: For the forces on the mass, $\vec{F}_{T2} - mg = 0 \text{ N}$ $\vec{F}_{T2} = mg$

For the *y*-components of the force:

$$\vec{F}_{T2y} + \vec{F}_{T3y} = 0 N$$
$$-\vec{F}_{T2} + \vec{F}_{T3} \sin \theta = 0 N$$
$$\vec{F}_{T3} = \frac{\vec{F}_{T2}}{\sin \theta}$$
$$\vec{F}_{T3} = \frac{mg}{\sin \theta}$$

For the *x*-components of the force:

$$\vec{F}_{T1x} + \vec{F}_{T3x} = 0 \text{ N}$$
$$-\vec{F}_{T1} + \vec{F}_{T3} \cos\theta = 0 \text{ N}$$
$$\vec{F}_{T1} = \vec{F}_{T3} \cos\theta$$
$$= \left(\frac{mg}{\sin\theta}\right) \cos\theta$$
$$\vec{F}_{T1} = \frac{mg}{\tan\theta}$$

Calculate the tensions in the three cables.

$$\vec{F}_{T1} = \frac{mg}{\tan \theta}$$

$$= \frac{45 \text{ kg } (9.8 \text{ m/s}^2)}{\tan 60.0^{\circ}}$$

$$\vec{F}_{T1} = 250 \text{ N}$$

$$\vec{F}_{T2} = mg$$

$$= 45 \text{ kg } (9.8 \text{ m/s}^2)$$

$$\vec{F}_{T2} = 440 \text{ N}$$

$$\vec{F}_{T3} = \frac{mg}{\sin \theta}$$

$$= \frac{45 \text{ kg } (9.8 \text{ m/s}^2)}{\sin 60.0^{\circ}}$$

Statement: \vec{F}_{T1} is 250 N, \vec{F}_{T2} is 440 N, and \vec{F}_{T3} is 510 N. 3. **Given:** m = 2.5 kg; $\vec{F}_{air} = 12 \text{ N} [right]$; $\Sigma \vec{F} = 0 \text{ N}$ **Required:** θ

Analysis: $\Sigma \vec{F} = 0 \text{ N}; |\vec{F}_{T}| = \sqrt{(\vec{F}_{Tx})^2 + (\vec{F}_{Ty})^2}; \theta = \tan^{-1} \left(\frac{\vec{F}_{Ty}}{\vec{F}_{Tx}}\right)$. Choose right and up as positive.

Solution: For the *x*-components of the force:

$$\Sigma \vec{F}_x = 0 \text{ N}$$
$$\vec{F}_{\text{T}x} + \vec{F}_{\text{air}} = 0 \text{ N}$$
$$\vec{F}_{\text{T}x} = -\vec{F}_{\text{air}}$$
$$\vec{F}_{\text{T}x} = -12 \text{ N}$$

 $\vec{F}_{T3} = 510 \text{ N}$

For the *y*-components of the force:

$$\Sigma \vec{F}_{y} = 0 \text{ N}$$

$$\vec{F}_{Ty} - mg = 0 \text{ N}$$

$$\vec{F}_{Ty} = mg$$

$$= (2.5 \text{ kg})(9.8 \text{ m/s}^{2})$$

$$\vec{F}_{Tx} = 24.5 \text{ N} \text{ (one extra digit carried)}$$

Construct \vec{F}_{T} from its components:

$$\begin{aligned} \left| \vec{F}_{\rm T} \right| &= \sqrt{\left(\vec{F}_{\rm Tx} \right)^2 + \left(\vec{F}_{\rm Ty} \right)^2} \\ &= \sqrt{\left(12 \text{ N} \right)^2 + \left(24.5 \text{ N} \right)^2} \\ \left| \vec{F}_{\rm T} \right| &= 27 \text{ N} \end{aligned}$$
$$\theta &= \tan^{-1} \left(\frac{\vec{F}_{\rm Ty}}{\vec{F}_{\rm Tx}} \right) \\ &= \tan^{-1} \left(\frac{24.5 \text{ N}}{12 \text{ N}} \right) \\ \theta &= 64^{\circ} \end{aligned}$$

Statement: The tension is the rope is 27 N. The rope makes an angle of 64° with the horizontal. **4. (a) Given:** $\theta = 15^{\circ}$; $m = 1.41 \times 10^{3}$ kg; $\Sigma \vec{F} = 0$ N

Required: FBD showing the forces on the car

Analysis: Choose [down the hill] as the positive *x*-direction and [up perpendicular to hill] as the positive *y*-direction.

Solution: The FBD for the car is shown below.

(b) Given: $\Sigma \vec{F} = 0$ N

Required: equations for the conditions for static equilibrium along horizontal and vertical directions

Analysis: $\Sigma \vec{F}_x = 0 \text{ N}$; $\Sigma \vec{F}_y = 0 \text{ N}$

Solution: For the *x*-components of the force (horizontal):

$$\Sigma \vec{F}_x = 0 \text{ N}$$

$$\vec{F}_{gx} - \vec{F}_T = 0 \text{ N}$$

$$mg \sin \theta - \vec{F}_T = 0 \text{ N}$$

For the y-components of the force (vertical):

$$\Sigma \vec{F}_y = 0 \text{ N}$$

$$\vec{F}_N + \vec{F}_{gy} = 0 \text{ N}$$

$$\vec{F}_N - mg \cos \theta = 0 \text{ N}$$

(c) Given: $\theta = 15^\circ$; $m = 1.41 \times 10^3 \text{ kg}$; $\Sigma \vec{F} = 0 \text{ N}$
Required: F_T
Analysis: $mg \sin \theta - \vec{F}_T = 0 \text{ N}$
Solution: $mg \sin \theta - \vec{F}_T = 0 \text{ N}$

$$\vec{F}_T = mg \sin \theta$$

$$= (1410 \text{ kg})(9.8 \text{ m/s}^2) \sin 15^\circ$$

$$\vec{F}_T = 3.6 \times 10^3 \text{ N}$$

Statement: The tension in the cable is 3.6×10^3 N. **5. (a) Given:** $\vec{F}_a = 42$ N [right 35° down]; m = 18 kg; $\Delta d = 5.0$ m **Required:** FBD for the mower **Analysis:** Choose forward and up as positive **Solution:** The FBD for the lawn mower is shown below.

(b) Given: $\vec{F}_a = 42$ N [right 35° down]; m = 18 kg; $\Delta d = 5.0$ m Required: aAnalysis: $\Sigma \vec{F}_x = m\vec{a}$

Solution:
$$\Sigma \vec{F}_x = m\vec{a}$$

 $\vec{F}_{ax} = m\vec{a}$
 $\vec{a} = \frac{\vec{F}_{ax}}{m}$
 $= \frac{(42 \text{ N})\cos 35^\circ}{18 \text{ kg}}$
 $= 1.911 \text{ m/s}^2 \text{(two extra digits carried)}$
 $\vec{a} = 1.9 \text{ m/s}^2$
Statement: The acceleration of the mower is 1.9 m/s² [forward].
(c) Given: $\vec{F}_a = 42 \text{ N} \text{ [right 35° down]}; m = 18 \text{ kg}$

Required: \vec{F}_{N}

Analysis: Use the FBD to identify the forces with vertical components. Use $\Sigma \vec{F}_y = 0$ N to solve for the normal force.

Solution:
$$\Sigma \vec{F}_{y} = 0 \text{ N}$$

 $\vec{F}_{N} + \vec{F}_{ay} - mg = 0 \text{ N}$
 $\vec{F}_{N} = mg - \vec{F}_{ay}$
 $= (18 \text{ kg})(9.8 \text{ m/s}^{2}) - (-42 \text{ N})\sin 35^{\circ}$
 $= 176.4 \text{ N} + 24.09 \text{ N}$
 $\vec{F}_{N} = 200 \text{ N}$
Statement: The normal force is $2.0 \times 10^{2} \text{ N}$ [up].

(d) Given: $\Delta d = 5.0 \text{ m}; \vec{a} = 1.911 \text{ m/s}^2$ Required: \vec{v}_f Analysis: $v_f^2 = v_i^2 + 2\vec{a}\Delta d$ Solution: $v_f^2 = v_i^2 + 2\vec{a}\Delta d$ $v_f^2 = 2(1.911 \text{ m/s}^2)(5.0 \text{ m})$ $v_f = 4.4 \text{ m/s}$ Statement: The velocity of the mower when it reaches the lawn is 4.4 m/s [forward]. 6. (a) Given: $m = 1.3 \text{ kg}; \theta = 25^\circ; \Sigma \vec{F} = 0 \text{ N}$ Required: \vec{F}_a

Analysis: $\Sigma \vec{F}_x = 0$ N

Solution: $\Sigma \vec{F}_x = 0 \text{ N}$ $\vec{F}_a - mg \sin\theta = 0 \text{ N}$ $\vec{F}_a = mg \sin\theta$ $= (1.3 \text{ kg})(9.8 \text{ m/s}^2)\sin 25^\circ$ $\vec{F}_a = 5.4 \text{ N}$

Statement: A force of 5.4 N is required to pull the cart up the ramp at a constant velocity. (b) Given: $m = 1.3 \text{ kg}; \theta = 25^\circ; \ \vec{a} = 2.2 \text{ m/s}^2$ [up the ramp] Required: \vec{F}_a Analysis: $\Sigma \vec{F}_x = m\vec{a}_x$ Solution: $\Sigma \vec{F}_x = m\vec{a}$ $\vec{F}_a - mg\sin\theta = m\vec{a}$ $\vec{F}_a = m\vec{a} + mg\sin\theta$ $= (1.3 \text{ kg})(2.2 \text{ m/s}^2) + (1.3 \text{ kg})(9.8 \text{ m/s}^2)\sin 25^\circ$ = 2.86 N + 5.384 N $\vec{F}_a = 8.2 \text{ N}$

Statement: A force of 8.2 N is required to pull the cart up the ramp at an acceleration of 2.2 m/s.