
11.3 Length Contraction, Simultaneity, 
and Relativistic Momentum
Time dilation is only one of the consequences of Einstein’s postulates. There are also 
consequences that deal with space, such as the contraction, or compression, of length. 
In this section, we will explore this concept using a thought experiment.

As well as changing our understanding of time and length, special relativity also 
changes our understanding of momentum, energy, and mass. Despite the short-
comings of some of the older ways of thinking about these concepts, they are still 
useful in many situations. Science is a process; sometimes there are incremental 
changes, and sometimes new information forces a complete rethinking of what 
we know.

For example, you will read below that the momentum of a moving object in 
special relativity is different from the momentum in Newtonian mechanics. An 
understanding of both of the ways of thinking about momentum, however, is 
useful for solving different types of problems. The equations of special relativity 
also reveal that mass and energy are equivalent. This insight can lead to the dis-
covery of new physical processes, such as nuclear fission, that can convert mass to 
mechanical energy.  CAREER LINK

The effects of relativity become very important in particle accelerators (Figure 1). 
Particle accelerators accelerate subatomic particles to nearly the speed of light. To 
describe the particles correctly at such high speeds, we must use special relativity.

Length Contraction
In the past two sections, you learned how special relativity contradicts the concept of 
absolute time in Newtonian mechanics. Measurements of time intervals are relative, 
in that they can be different for different observers. However, time is just one aspect 
of a reference frame; reference frames also involve measurements of position and 
length. How are these measurements affected by relativity?

Recall the example of observer 1 on the railway car and observer 2 on the ground 
near the tracks. Consider how observers 1 and 2 might each measure a particular 
length or distance (Figure 2). Suppose observer 2 marks two locations, A and B, on 
the ground. She then measures these locations to be a distance Ls apart on the x-axis. 
Observer 1 travels in the positive x-direction at a constant speed v, and as he passes 
point A he reads his clock. Observer 1 reads his clock again when he passes point B 
and calls the difference between the two readings Dts. This is the proper time interval 
because observer 1 measures the start and finish times at the same location (the 
centre of his railway car) with the same clock.

Like proper time, proper length is a measurement made by an observer who is sta-
tionary relative to the object being measured. Just as we denote the proper time by Dts, 
we will denote the proper length by Ls. An observer at rest relative to the object mea-
sures the length as proper length.

Recall from Section 11.2 that when observer 2 measures with her clock the time it 
takes for observer 1 to travel from A to B, the value she determines for Dtm is given 
by the time dilation equation:

Dtm 5
Dts

Å1 2
v 2

c 2

Multiplying both sides of this equation by v gives

vDtm 5
vDts

Å1 2
v 2

c 2

Figure 1  Particle accelerators, such 
as the Large Hadron Collider, increase 
particle speeds to nearly the speed 
of light. The resulting increase in the 
inertia of the particles means that strong 
magnetic fields are needed to bend the 
trajectories of the particles into a circle.

v

observer 1 and his clock

A B
Ls

x

observer 2

Figure 2  Observer 1 measures the 
distance between points A and B by 
using a clock to measure the time, Dts, 
it takes him to travel between the two 
points, together with his known speed, v.

proper length (Ls) the length of an 
object or distance between two points as 
mea sured by an observer who is stationary 
relative to the object or distance
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For observer 2, the time that observer 1 travels multiplied by v is simply the 
distance between A and B, or Ls:

vDtm 5 Ls

Similarly, the distance measured by observer 1 is the speed, v, times the proper 
time measured in his reference frame, so

vDts 5 Lm

Substituting these last two equations into the time dilation equation gives the 
following result:

 Ls 5
Lm

Å1 2
v 2

c 2

 Lm 5 LsÅ1 2
v 2

c 2

Note that, because Dtm is diff erent from Dts due to time dilation, the lengths 
measured by the two observers will also be diff erent. Th e length, Lm, measured by 
observer 1 is shorter than the length, Ls, measured by observer 2. Th is eff ect, called 
length contraction, or compression, is the shortening of distances in an inertial frame 
of reference moving relative to an observer in another inertial frame of reference. 
Contraction occurs along the direction of motion. Length contraction is the spatial 
counterpart to time dilation.

Consider the same situation, but now points A and B are the two ends of a metre 
stick. Observer 2 and the metre stick are in motion, while observer 1 is at rest (Figure 3). 
Th e metre stick is at rest relative to observer 2, so she measures the length of the metre 
stick and determines that Ls 5 1  m, exactly. Observer 1 measures the length of the 
metre stick as it moves past him; he measures a length Lm that is shorter than Ls.

length contraction the shortening of 
length or distance in an inertial frame of 
reference moving relative to an observer in 
another inertial frame of reference

relativistic length (Lm) the length of an 
object or the distance between two points 
as measured by an observer moving with 
respect to the object or distance

Another way of saying this is that a metre stick moving relative to a stationary observer 
becomes shortened. Th e proper length, Ls, is the length measured by an observer at rest 
relative to the metre stick. It follows, then, that the length Lm, which is measured by 
the other observer and is always shorter than the proper length, is the relativistic length.

Length contraction is described by the following equation:

Lm

Ls
5 Å1 2

v 2

c 2

observer 2

observer 1
A B

metre stick

v � 0

v  � speed of observer 2
 relative to observer 1

Figure 3  Observer 1 is at rest and observer 2, along with the metre stick, is in a reference frame 
moving with speed v relative to observer 1. Observer 1 observes that the moving metre stick is 
shorter than the length measured by observer 2.
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The graph of 
Lm

Ls
 versus the ratio 

v
c  in Figure 4 shows that, for speeds that are 

small compared to c, the fraction 
Lm

Ls
 is nearly 1. At speeds where v approaches c, the 

fraction 
Lm

Ls
 approaches zero.

Figure 4  For typical terrestrial speeds, 
v
c

 is very small and Lm < Ls.
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In the previous example, the metre stick is in one frame of reference and the clock 
is in the other, so each observer must use a different relativistic property to obtain 
correct measurements. Observer 1 uses proper time to measure the length Lm, which 
he sees contracted. Observer 2 observes the proper length in her frame but must use 
time dilation for the time Dtm observed in the frame of observer 1.

Length contraction occurs along the direction of motion (in these examples, along 
the x-axis). The following Tutorial models how to solve problems in which length is 
contracted.

 

Tutorial 1 Solving Problems Related to Length Contraction

The following Sample Problem illustrates how length is contracted for an observer in a 
moving frame of reference.

Sample Problem 1: Calculating Length Contraction
An observer on Earth measures the length of a spacecraft travelling at a speed of 0.700c 
to be 78.0 m long. Determine the proper length of the spacecraft.

Given: Lm 5 78.0 m; v 5 0.700c

Required: Ls

Analysis: 
Lm

Ls
5 Å1 2

v 2

c 2

   Ls 5
Lm

Å1 2
v 2

c 2

Solution:   Ls 5
Lm

Å1 2
v 2

c 2

   5
78.0 m

Å1 2
10.700c2 2

c 2

   5
78.0 m

"1 2 0.7002

   Ls 5 109 m

Statement:  The proper length of the spacecraft is 109 m.
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Muons and Evidence for Length Contraction  
and Time Dilation
The decay of unstable elementary particles called muons demonstrates how length 
contraction and time dilation complement each other. Muons are particles that are 
about 207 times as massive as electrons, travel at speeds of about 0.99c, and decay in 
2.2 ms for an observer at rest relative to the muons.

One source of muons is the cosmic radiation that collides with atoms in Earth’s 
upper atmosphere. In Newtonian mechanics, most of these muons should decay 
after travelling about 660 m into the atmosphere. Yet experimental evidence 
shows that a large number of muons decay after travelling 4800 m—over seven 
times as far.

Why does this happen? The only known explanation comes from special relativity. 
Consider Earth as the stationary frame of reference. As observed from Earth, these 
muons undergo time dilation. They also undergo length contraction, but they are 
so small to begin with that this is a minor effect. Due to time dilation at very high 
speeds, the muons’ “clocks” run slower relative to Earth clocks, so their lifetimes as 
measured on Earth increase by a factor of seven. This allows them to travel the greater 
distance.

What does this physical situation look like in the muon’s frame of reference? An 
observer moving with the muon would notice a contracted Earth rushing toward the 
muon. More importantly, the distance from the upper atmosphere to Earth’s surface 
would appear to be about one-seventh its normal thickness. Therefore, while the 
muons decay in their own frame of reference in just 2.2 ms, the 4800 m distance they 
must travel shortens in their frame of reference to 660 m.

With this example, you start to see the interrelationship between space and time 
through the complementary effects of length contraction in one reference frame and 
time dilation in the other. We will examine the inseparability of space and time later 
in this section.

Relativity of Simultaneity
Suppose you are driving down the street, and you see two different traffic lights 
change colour at the same time. This is an example of simultaneity—the occurrence of 
two or more events at the same time. Your everyday experiences and intuition suggest 
that the notion of simultaneity is absolute; that is, two events are either simultaneous 
or not simultaneous for all observers. However, determining whether or not two 
events are simultaneous involves the measurement of time. Your study of time dila-
tion in this chapter has already shown that different observers do not always agree 
on measurements involving clocks, time intervals, and lengths. What does special 
relativity imply for our perception of simultaneity?

 

Practice

  1.  An object at rest is 5.0 m long, but when it drives past a stationary observer, the 
observer measures it to be only 4.5 m long. Determine how fast the object is moving. 
T/I  [ans: 0.44c, or 1.3 3 108 m/s]

  2.  A spacecraft passes you at a speed of 0.80c. The proper length of the spacecraft is 
120 m. Determine the length that you measure as it passes you.  T/I  [ans: 72 m]

  3.  (a)   A car with proper length 2.5 m moves past you at speed v, and you measure its 
length to be 2.2 m. Determine the car’s speed. [ans: 1.4 3 108 m/s]

    (b)   A rocket with a proper length of 33 m moves past you at speed v, and 
you measure its length to be 26 m. Determine the rocket’s speed.  T/I

[ans: 1.8 3 108 m/s]

simultaneity the occurrence of two or 
more events at the same time

Analyzing Relativistic Data  
(page 604)
Now that you have learned how to 
calculate length contraction, perform 
the portion of Investigation 11.2.1 that 
uses the length contraction equation.

Investigation 11.2.1
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If two events appear to be simultaneous to one observer, will other observers also 
fi nd these events to be simultaneous? Consider the situation shown in Figure 5. 
Observer 1 is standing in the middle of his railway car, moving with a speed v relative 
to observer 2, when two lightning bolts strike the ends of the car. Th e lightning bolts 
leave burn marks on the ground (points A and B), which indicate the locations of the 
two ends of the car when the bolts struck. We now ask, “Did the two lightning bolts 
strike simultaneously?”

Observer 2 is midway between the burn marks at A and B. Th e light pulses from 
the lightning bolts reach her at the same time (Figure 5(c)). Observer 2 concludes that, 
because she is midway between points A and B and the light pulses reach her at the 
same time, the lightning bolts struck the railway car at the same time. Th erefore, the 
bolts are simultaneous, as viewed by observer 2.

Figure 5  In a thought experiment to study simultaneity, (a) two lightning bolts strike the ends 
of the moving railway car, leaving burn marks on the ground. (b) According to observer 2, the 
lightning bolts are simultaneous. She comes to this conclusion because she is midway between 
the two burn marks. (c) The light pulses from the two bolts also reach observer 2 at the same time.

v
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A B
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What does observer 1 see? He stands in the middle of his railway car, so, like 
observer 2, he is also midway between the places where the lightning bolts strike. 
Hence, if the two events are simultaneous as viewed by observer 1, the light pulses 
should reach him at the same time. Do they? Observer 2 can answer this question.

She observes that the railway car moves to the right, and because observer 1 is 
moving, the fl ash at B will reach him before the fl ash from A. Even with the distor-
tions of time and space that arise from relativity, events do not occur out of sequence. 
So observer 1 will see the lightning strike at B before the lightning strike at A. Th e 
speeds of the light pulses from A and B are the same (a consequence of Einstein’s pos-
tulates), and the distances that the pulses travel are the same. Th erefore, observer 1 
must conclude that the light pulses were not emitted at the same time.

Th e two lightning bolts in Figure 5 are therefore simultaneous for one observer 
(observer 2) but not for another observer (observer 1). Yet both observers are cor-
rect in their own reference frames, even if their observations are diff erent. No refer-
ence frame is preferred. Th e observation of simultaneity can be diff erent in diff erent 
reference frames.

Relativistic analysis of simultaneity can help clarify apparent paradoxes. For 
example, in a simple time dilation experiment, one clock (C) travels between two 
clocks (A and B) that are stationary and synchronized with respect to each other. A 
stationary observer with respect to A and B notes that 10 s elapse on C as it moves 
from A to B, while 20 s elapse on A and B. A person holding C, however, will see A 

and B running slow by the same factor of 
10
20

, or 
1
2

. She will see only 
1
2

 of 10 s, or 5 s, 

elapse on A and B as she moves from A to B.
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How is this possible? Where did the “extra” 15 s go? The answer is that while clocks 
A and B are synchronized in their reference frame, they are not synchronized in the 
reference frame of C. At any instant of time for the moving observer, a snapshot of A 
and B will show that B is 15 s ahead of clock A. As the moving observer moves from 
A to B, A will go from 0 s to 5 s, and B will go from 15 s to 20 s.

Relativity of simultaneity is necessary to make sense of the reciprocity of time dila-
tion, as well as the reciprocity of length contraction. Together, these concepts ensure 
that no reference frame is preferred. Relativity of simultaneity also works to ensure 
that the existence of a universal speed limit, c, does not lead to logical problems, as 
illustrated by the lightning example above. All of these concepts work together to 
ensure that special relativity makes sense.

If the previous sentences sound familiar, the reason is that they are a restatement 
of Einstein’s postulates for relativity. Originally, Einstein wanted to call his model 
“the special theory of invariance” because it was of utmost importance to him that all 
laws of physics be invariant between inertial frames. Led by this principle, methodical 
logic, and early experimental evidence, he was able to conclude that the speed of light 
is invariant between and within inertial frames. To achieve this conclusion, he had to 
abandon the traditional views of time (in which time measurements were the same 
for all observers) and space (in which all spatial measurements were the same for all 
observers). Einstein’s postulates reveal that the speed of light is independent of the 
speed not only of the source (just like all waves) but also of the observer.

The Twin Paradox
With our new understanding of space and time as properties that are both affected by 
motion comes the challenge of keeping track of what happens in each reference frame. 
Problems requiring special relativity become difficult to conceptualize without the 
classical notions of simultaneous events and absolute space and time. One of the most 
famous examples of this type of problem is the twin paradox—a thought experiment in 
which a traveller in one frame of reference returns from a voyage to learn that time has 
dilated in his reference frame, but not in the reference frame of his Earth-bound twin.

Consider an astronaut who travels to the Sirius star system, which is 8.6 light years 
(ly) from Earth (Figure 6). His spacecraft is capable of a maximum speed of 0.90c, 
which means that he can reach the Sirius system in about 9.6 years. A round trip will 
take him just over 19 years. While on his mission, a crew of scientists on Earth, one 
of whom just happens to be the astronaut’s twin sister, tracks the astronaut’s health. 
The scientists’ observations of the astronaut’s biological and physical clocks indicate 
that he is aging more slowly than he would have done on Earth (although within his 
own frame of reference, he is, of course, unaware of any change in the flow of time). 
During the 19-year round trip, the crew notes that he ages only 8.3 years.

twin paradox a thought experiment 
in which a traveller in one frame of 
reference returns from a voyage to learn 
that time had passed more slowly in his 
spacecraft relative to the passage of time 
on Earth, despite the seemingly symmetric 
predictions of special relativity

Figure 6  (a) An astronaut travels to the Sirius star system and then returns while his twin sister on 
Earth monitors his trip. (b) As viewed by the astronaut (in his reference frame), his Earth twin and 
planet Earth take a journey in the direction opposite to that in (a).

as viewed by 
Earth twin

Earth twin

astronaut twin

SiriusEarth
v � 0.90c

(a)

Earth twin

astronaut twin

as viewed by 
astronaut twin

Earth
v � 0.90c

(b)

From the astronaut’s frame of reference, Earth recedes from him at a rate of 0.90c.
He therefore expects everyone on Earth, including his sister, to age only 8.3 years, while 
he ages 19 years. Imagine his surprise, then, when upon his return, his sister’s analysis 
is correct and his analysis is wrong—she aged 19 years compared to his 8.3 years.
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What happened here? Did the special theory of relativity fail, or is the error in the 
interpretation of relativistic effects? To understand the situation correctly, you need 
to consider that the astronaut moved in a frame of reference that was not truly iner-
tial. So far, all the examples in this chapter have involved observers moving with con-
stant velocities. In the case of the astronaut, however, he had to accelerate to change 
direction during the trip. The situation is, therefore, not symmetrical between the 
astronaut and his non-accelerating sister, and he cannot draw the same conclusions as 
his sister. Put another way, his frame of reference is not equivalent to that of his sister.

Nevertheless, there is a relativistic observation that the astronaut can use that 
completely reconciles the imagined paradox. Recall the interpretation of muon decay 
in the atmosphere and how the observations in each frame complement each other 
through the interconnection of space and time. Space-time is the four-dimensional 
coordinate system in which the three space coordinates (x, y, and z) are combined 
with a fourth dimension—time. From the astronaut’s frame of reference, the universe 
undergoes length contraction. The distance that he must travel each way is, from his 
point of view, not 8.6 ly, but 3.7 ly. With a total distance of 7.4 ly and a speed that 
is most of the time 0.90c, the astronaut sees the mission take only 8.3 years—the 
same amount by which his twin has determined he will age during the voyage. So 
he returns to find that his sister has aged 19 years while he has aged only 8.3 years.

Relativistic Momentum
As you learned in Chapter 5, an object with mass m moving with speed v has a 
momentum equal to the product of the two values. Momentum is conserved when 
there are no external forces acting on the object. This is an essential concept in 
physics. In fact, the conservation of momentum is one of the fundamental conserva-
tion rules in physics and is believed to be satisfied by all laws of physics, including 
the theory of special relativity.

When an object’s speed is small compared with the speed of light, the object’s 
momentum can be determined using the Newtonian formula for momentum, p 5 mv. 
However, as v approaches the speed of light, we have to take special relativity into 
account. Newtonian momentum gives a linear relation between p and v. By contrast, 
in special relativity the relativistic momentum—the momentum of objects moving 
at speeds near the speed of light—becomes extremely large as the object’s speed 
approaches c. Figure 7 graphically compares the momentum in Newtonian physics 
and special relativity.

space-time a four-dimensional 
coor dinate system in which the three 
space coordinates are combined with  
time, a fourth dimension

The effects of time dilation and length contraction are not included in the 
Newtonian momentum used in classical mechanics. To account for the relativistic 
effects on the momentum of objects moving near the speed of light, Einstein showed 
that proper time should be used to calculate momentum. This amounts to using a 
clock that travels along with the object. At the same time, an observer who watches 
the object move with speed v should take the measurement of length. The proper time 

relativistic momentum the momentum 
of objects moving at speeds near the speed 
of light

Figure 7  Newtonian mechanics predicts that momentum increases linearly with speed, while special 
relativity predicts that momentum approaches infinity at speeds close to c.
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is given by the expression Dts 5 DtmÅ1 2
v 2

c 2, where Dtm is the dilated time. Speed v 

is 
Dx
Dt

, so when we replace t with Dts in the equation for Newtonian momentum, the 

resulting equation is

 p 5 m 

Dx
Dts

 p 5 m 

Dx

DtmÅ1 2
v 2

c 2

where v is the speed of the object as viewed by the observer in the stationary reference 

frame. Since v 5
Dx
Dtm

, we get

p 5
mv

Å1 2
v 2

c 2

This is the equation for relativistic momentum, which is used to calculate the 
mo men tum of objects moving at close to the speed of light. The momentum of an 
object differs noticeably from the predictions of Newtonian mechanics for speeds 
greater than about 0.1c.

An important feature of the equation for relativistic momentum is the rest mass, m. 
Rest mass is the mass of the object as measured at rest with respect to the observer. 
This value is sometimes called the proper mass. The rest mass is an invariant value 
in special relativity; that is, it does not change at different speeds. However, at speeds 
close to the speed of light, the measured mass of an object will differ from the rest 
mass. This measured mass, or relativistic mass, is observed in a frame moving at speed 
v with respect to the observer.

The application of forces increases an object’s momentum. So, after a large force is 
applied or a collision occurs, the object’s momentum becomes very large. However, 
even when the momentum is very large, the object’s speed never quite reaches the 
speed of light. In the following Tutorial, you will compare the values obtained using 
the classical momentum equation and the relativistic momentum equation.

rest mass the mass of an object 
measured at rest with respect to the 
observer; also called the proper mass

relativistic mass the mass of an object 
measured by an observer moving with 
speed v with respect to the object

 

Tutorial 2 Calculating Relativistic Momentum

The following Sample Problem illustrates the difference between classical and relativistic momentum.

Sample Problem 1: Comparing Classical and Relativistic Momentum
In experiments to study the properties of subatomic particles, 
physicists routinely accelerate electrons to speeds close to the 
speed of light. An electron has a mass of 9.11 3 10–31 kg and 
moves with a speed of 0.99c.

(a) Calculate the electron’s momentum using the non-relativistic 
equation.

(b) Calculate the electron’s relativistic momentum. Compare the 
relativistic momentum and the non-relativistic momentum.

Solution

(a) Given: m 5 9.113 10231 kg; v5 0.99c ; c5 3.03 108 m/s

Required: pclassical

Analysis: pclassical 5 mv

Solution:  pclassical 5 mv

   5 m 10.99c2
   5 19.113 10231 kg2 10.992 13.03 108 m/s2
   pclassical 5 2.7 3 10222 kg #m/s

Statement: The non-relativistic momentum of the electron is 
2.7 3 10222 kg #m/s.
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The Universal Speed Limit
Throughout this chapter, you have seen the development of the various components 
of special relativity—time dilation, length contraction, simultaneity, and relativistic 

momentum. Each of these concepts involves the expression Å1 2
v 2

c 2, which is a 

mathematical consequence of the postulates of special relativity. All physical laws 
remain invariant between inertial frames of reference with a relative velocity, and the 
speed of light remains the same in all frames of reference, regardless of whether the 
frame, light source, or observer is moving.

After using thought experiments to discover time dilation, length contraction, 
simultaneity, and relativistic momentum, Einstein also realized that, as a consequence 
of relativity, the speed c is a unique speed that plays a unique role in the universe. 
Although Einstein originally concentrated on the behaviour of light, researchers now 
understand that the speed c is special in its own right, independent of the properties 
of light waves. The universe truly does have an ultimate speed limit.

 

(b) Given: m 5 9.11310231 kg; v 5 0.99c; c 5 3.03 108 m/s

Required: prelativistic

Analysis: prelativistic 5
mv

Å1 2
v 2

c 2

Solution:

 prelativistic 5
mv

Å1 2
v 2

c 2

 5
m 10.99c2

Å1 2
v 2

c 2

  5
19.11 3 10231 kg 2 10.992 13.00 3 108 m/s2

Å1 2
10.99c2 2

c 2

 prelativistic 5 1.9 3 10221 kg #m/s

Statement: The relativistic momentum of the electron is 
1.9 3 10221 kg #m/s, which is about seven times as great as 
the momentum predicted by the classical definition.

Practice
  1.  A proton with a mass of 1.67 3 10227 kg moves in a particle accelerator at 0.85c. 

Calculate the proton’s
    (a)  non-relativistic momentum [ans: 4.3 3 10219 kg?m/s]

    (b)  relativistic momentum  T/I  [ans: 8.1 3 10219 kg?m/s]

  2.  Suppose a 100.0 g projectile is launched with a speed 0.30c relative to Earth. Determine its 
relativistic momentum with respect to Earth.  T/I  [ans: 9.4 3 106 kg #m/s]

  3.  A proton moves at 0.750c relative to an inertial system in a lab. Given that the proton’s mass 
is 1.67 3 10227 kg, determine its relativistic momentum in the lab’s frame of reference.  T/I  

[ans: 5.68 3 10219 kg #m/s]

  4.  A cube of iridium has the following dimensions: 0.100 m 3 0.100 m 3 0.100 m. Suppose 
the cube is moving at 0.950c, in the direction of the y-axis. The density of iridium is 
2.26 3 104 kg/m3 when measured at rest.  K/U   T/I   A

(a)   Which of the three directions, x, y, or z, is affected by the motion? [ans: y]

(b)   Calculate the relativistic volume of the cube. [ans: 3.12 3 1024 m3]

(c)   Calculate the relativistic momentum of the cube. [ans: 2.06 3 1010 kg?m/s]

Analyzing Relativistic Data  
(page 604)
Now that you have learned about 
relativistic momentum, perform the 
portion of Investigation 11.2.1 that 
uses the relativistic momentum 
equation.

Investigation 11.2.1
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Questions

 1. Spacecraft 1 passes spacecraft 2 at 0.755c relative to 
spacecraft 2. An astronaut on spacecraft 1 measures 
the length of spacecraft 2 to be 475 m. Calculate the 
proper length of spacecraft 2. T/I

 2. An astronaut moving at 0.55c with respect to 
Earth measures the distance to a nearby star as  
8.0 ly. Another astronaut makes the same voyage at 
0.85c with respect to Earth. Calculate the distance 
the second astronaut measures between Earth and 
the star. T/I

 3. François is travelling at a speed of 0.95c on a 
railway car, which François has measured as 25 m 
in length. Soledad, who is located on the ground 
near the railway tracks, arranges for two small 
explosions to occur on the ground next to the  
ends of the railway car. According to Soledad, 
the two explosions occur simultaneously, and she 
uses the burn marks on the ground to measure 
the length of François’s railway car. According 
to François, do the two explosions occur 
simultaneously? If not, then according to François, 
which explosion occurs first? K/U T/I

 4.  In experiments, physicists routinely accelerate 
protons to speeds quite close to the speed of light. 
The mass of a proton is 1.67 3 10–27 kg, and the 
proton is moving with a speed of 0.99c. T/I  A

(a)  Calculate the proton’s momentum, according to 
Newton’s definition.

(b)  Calculate the proton’s relativistic momentum.
(c)  Determine the ratio of the relativistic 

momentum to the Newtonian momentum.
 5.  The relativistic momentum of a particle of rest mass 

m and speed v is equal to 5mv. Calculate the speed 
of the particle. T/I  A

 6.  An electron with a speed of 0.999c has a 
momentum that is equal to the momentum of a 
ship with a mass of 4.38 3 107 kg moving at a 
certain speed. Determine the speed of the ship. T/I

 7.  If you were travelling on a spacecraft at 0.99c 
relative to Earth, would you feel compressed in the 
direction of travel? Explain your answer. K/U

 8.  Why do we not notice the effects of length 
contraction in our everyday lives? For example, why 
do cars not appear shorter when they drive past us 
at high speeds? K/U

Summary

• Proper length, Ls, is the length of an object as measured by an observer who 
is at rest with respect to the object. Relativistic length, Lm, is the length of the 
object as measured by an observer not at rest with respect to the object.

• The equation for length contraction is Lm 5 LsÅ1 2
v 2

c 2. For v greater than 

zero, Lm , Ls. Contraction occurs along the direction of motion.

• For two observers in motion relative to each other, events that appear 
simultaneous for one observer are not simultaneous for the other observer. 
However, in both cases, events appear to both observers in the order that they 
occur. The observers perceive the time between the two events differently.

• The twin paradox describes a thought experiment in which a moving observer 
ages more slowly than his or her “twin,” despite the reciprocity of time dilation 
because the reference frame of the moving observer is not inertial.

• The equation for relativistic momentum is p 5
mv

Å1 2
v 2

c 2

. Relativistic

 mo men tum increases as the speed increases and is limited by the speed of light.
• The rest mass of an object is the mass of the object as measured by an 

observer at rest with respect to the object.
• No object with a rest mass greater than zero can move as fast as, or faster 

than, the speed of light.

Review11.3

11.3 Length Contraction, Simultaneity, and Relativistic Momentum  597NEL

8106_CH11_p588-613.indd   597 4/30/12   10:49 AM


