
11.2 Time Dilation
The implications that arise from Einstein’s postulates and the constant speed of light 
for all inertial frames are not obvious. While Einstein showed that physical laws in 
inertial frames behave in understandable and expected ways, he also showed, using 
another thought experiment, that time behaves in ways that are unexpected and 
counter-intuitive for a stationary observer watching another observer who is moving 
at a speed close to the speed of light. Although the distorted clock in Figure 1 is art, 
special relativity’s predictions about time in an inertial frame of reference are no 	
less bizarre.

In this section, you will see the development of a model for the behaviour of time 
in different frames of reference. This model, called time dilation, explains the slowing 
down of time in one reference frame moving relative to an observer in another ref-
erence frame. This treatment will start in terms of a thought experiment and then 
expand through a simple algebraic derivation. You will then learn about the physical 
significance of time dilation, as well as the experimental evidence supporting the 
results predicted by special relativity.

Time Dilation
Einstein’s two postulates seem straightforward. The first postulate—that the laws of 
physics must be the same in all inertial reference frames—agrees with Newton’s laws, 
so it does not seem that this postulate can lead to anything new for mechanics. The 
second postulate concerns the speed of light, and it is not obvious what it will mean 
for objects other than light. Einstein, however, showed that these two postulates 
together lead to a surprising result concerning the very nature of time. He did so by 
carefully considering how time in inertial frames is measured.

Einstein analyzed the operation of the simple clock in Figure 2 in a thought 
experiment. This clock keeps time in a frame that, for the purpose of this thought 
experiment, is at rest. The clock measures time using a pulse of light that travels back 
and forth between two mirrors. A distance d separates the mirrors, and light travels 
between them at speed c. The time required for a light pulse to make one round trip 

through the clock is thus 
2d
c . That is the time required for the clock to “tick” once.

Figure 1  This artist’s depiction 
conveys the idea that time behaves 
very differently for an observer at rest 
compared to an observer moving at 
close to the speed of light.

time dilation  the slowing down of time in 
one reference frame moving relative to an 
observer in another reference frame

mirror

mirror

c
d

2d
cround-trip time 5  

Figure 2  Each round trip of a light pulse between the mirrors corresponds to one tick of the light clock.
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Now	 the	 light	 clock	 moves	 with	 constant	 horizontal	 speed	 v	 relative	 to	 a	 clock	
at	rest.	For	this	thought	experiment,	a	railway	car	capable	of	moving	at	high	speeds	
along	a	 long,	 straight	 track	provides	 this	motion.	How	does	 this	motion	aff	ect	 the	
operation	of	 the	clock?	See	 Figure 3.	For	observer	1,	who	 rides	with	 the	clock	on	
the	car,	the	return	path	of	the	light	pulse,	and	thus	one	tick	of	the	clock,	appears	as	it	
does	for	any	observer	at	rest	with	respect	to	the	clock.	Th	 e	pulse	simply	travels	up	and	
down	between	the	two	mirrors.	Th	 e	motion	of	the	car	has	no	eff	ect	on	the	measure-
ment	of	the	speed	of	light	for	observer	1,	in	accordance	with	the	postulates	of	special	

relativity.	Th	 e	separation	of	the	mirrors	is	still	d,	so	the	round-trip	time	is	still	
2d
c .

Th	 e	 term	 Dt	 represents	 the	 time	 interval	 for	 one	 tick	 of	 the	 clock.	 When	 an	
observer	is	at	rest	(stationary)	with	respect	to	the	clock,	we	write	Dts	for	the	time	the	
observer	measures	for	one	tick.	We	write	Dtm	for	the	time	interval	measured	by	an	
observer	who	sees	the	clock	moving	relative	to	her.

If	Dts	is	the	time	required	for	the	clock	to	make	one	tick	as	measured	by	observer	1	
(who	is	stationary	relative	to	the	clock),	then

Dts 5
2d
c

Observer	 2	 sees	 the	 clock	 moving	 while	 standing	 on	 the	 ground,	 as	 shown	 in	
Figure 4.	She	also	measures	the	same	speed	of	light	as	observer	1,	but	for	her	the	light	
pulse	moves	a	greater	distance.	Th	 is	situation	is	analogous	to	the	observer	on	a	railway	
car	tossing	a	ball	vertically	 in	the	air	(Figure	2	 in	Section	11.1).	To	the	observer	on	
the	ground,	the	ball	traces	out	a	parabolic	arc	because	of	the	two-dimensional	motion	
provided	by	the	horizontally	moving	car	and	the	vertically	displaced	ball.	In	the	case	of	
the	pulse	in	the	light	clock,	observer	2	sees	the	light	move	at	speed	c,	but	along	a	path	
that	has	a	horizontal	defl	ection	dependent	on	the	speed,	v,	of	the	railway	car.

v

cc

observer 1
clock as seen by observer 2

observer 2

Figure 4 Observer 2, who is at rest on the ground, views the motion of the light pulses in the clock 
and sees the light pulse move a greater distance.

Figure 3 (a) A light clock is travelling with observer 1 on his railway car. (b) Light pulses travel back 

and forth in the clock. Each tick of the clock takes a time Dts 5
2d
c

. According to observer 1, the 

operation of the clock is the same whether or not the railway car is moving.

light clock

v

(a)

v

observer 1’s
clock

round-trip time
measured by observer 1:

c d c
2d

�t s �

(b)
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The distance that the light travels is longer for observer 2 than for observer 1, but 
the speed of light is the same for both observers. So, for observer 2, the time taken 
for the light to complete one tick (Dtm) as it travels between the mirrors will be longer 
than for observer 1. The mathematical expression for Dtm in terms of v, c, and d can 
be derived using geometry and the Pythagorean theorem. 

In Figure 4, observer 2 sees the light pulse travel at speed c. As it travels, the light 
pulse covers a total vertical distance of 2d and a total horizontal distance of vDtm. The 
path of the light pulse forms the hypotenuse, z, of the two back-to-back right triangles 
in Figure 5.

z z

z �

2
v �tm

v �tm

d

d 2 �
2

2
v tm∆�   �

Figure 5  According to observer 2, the round-trip travel distance for a light pulse is 2z, where 

z 5 Åd 2 1 avDtm

2
b

2

, which is longer than the round-trip distance 2d seen by observer 1.

Applying the Pythagorean theorem to each triangle,

z2 5 d 2 1 avDtm

2
b

2

	 (Equation 1)

We know that z 5 cDtm. Since z is half the total round-trip distance, and replacing v 
in Figure 5 with c, the speed of light, we get

z 5
cDtm

2
Squaring z,

z2 5
c 2 1Dtm2 2

4
Substitute z2 into Equation 1:

c 2 1Dtm2 2
4

5 d 2 1
v 2 1Dtm2 2

4
Now solve for Dtm:

																			1Dtm2 2 5
4d 2

c 2 1
v 2

c 2 1Dtm2 2

	 1Dtm2 2 a1 2
v 2

c 2b 5
4d 2

c 2

																			1Dtm2 2 5
4d 2

c 2

a1 2 v 2

c 2b
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Taking the square root of both sides and expressing the equation in terms of Dts, 

where Dts 5
2d
c , leads to

Dtm 5

2d
c

Å1 2
v 2

c 2

Dtm 5
Dts

Å1 2
v 2

c 2

Recall that Dtm is the time interval measured by an observer who sees the clock 
moving relative to herself, and Dts is the time interval for an observer who is sta-
tionary with respect to the moving clock. In other words, the equation indicates that 
these times are different for each observer. These times are relativistic times, which 
means that time changes relative to an observer. The time interval required for the 
pulses of light to travel between the two mirrors depends on the relative motion 
between the observers. This is one of Einstein’s key insights: time is not absolute.

Now consider the implications of the last equation in more detail. The clock in 
Figures 3 and 4 is at rest relative to observer 1, and observer 1 measures a time Dts for 
each tick. The same clock is moving with speed v relative to observer 2, and according 
to the equation she measures a longer time Dtm for each tick. This result is not lim-
ited to light clocks. Postulate 1 of special relativity states that all the laws of physics 
must be the same in all inertial reference frames. We could use a light clock to time 
any process in any reference frame. Since the equation holds for light clocks, it must 
therefore apply to any process, including biological processes.

Divide both sides of the previous equation by Dts. Then, we find that the ratio of 
Dtm (the time measured by observer 2) to Dts (the time measured by observer 1) is

Dtm

Dts
5

1

Å1 2
v 2

c 2

This equation describes the phenomenon of time dilation. Looking at the above 
equation, if v were greater than c, then the term under the square root sign would 
be negative. Since the square root of a negative number is undefined, v can never be 
greater than the speed of light, c. So the right side of the equation is always greater 

than 1. Hence, the ratio 
Dtm

Dts
 is greater than 1, which means that observer 2 measures 

a longer time for the clock than observer 1 does. In other words, according to 
observer 2, a moving clock will take longer for each tick. Therefore, special relativity 
predicts that moving clocks run more slowly from the point of view of an observer 
at rest. 

This result seems very strange because your everyday experience tells you that a 
clock (such as your wristwatch) travelling in a car gives the same time as an identical 
clock at rest. If the equation for time dilation is true (and experiments have con-
clusively shown that it is), why have you not noticed time dilation before now? The 

graph of 
Dtm

Dts
5

1

Å1 2
v 2

c 2

 shown in Figure 6 indicates the answer as a function of 

the speed, v, of the clock. At ordinary terrestrial speeds, v is much smaller than the 

speed of light c, and v 2 is even smaller than c 2. Therefore, the ratio 
Dtm

Dts
 is very close 

to 1 for speeds less than 0.1c. 

relativistic time  time that is not absolute, 
but changes relative to the observer

0
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Figure 6  For typical terrestrial speeds, 
v
c

 is very small and Dtm < Dts.
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For example, when v 5 50	m/s, the ratio is

	
Dtm

Dts
5

1

Å1 2
v 2

c 2

								 5
1

Å1 2
150	m/s2 2

13.0 3 108	m/s2 2

	Dtm

Dts
5 1.000	000	000	000	014

The result is extremely close to 1, so for typical terrestrial speeds, the difference 
between Dts and Dtm is negligible.

The time interval for a particular clock (or process) as measured by an observer 
who is stationary relative to that clock is called the proper time, Dts. The word “proper” 
does not mean that measurements of time in other frames are incorrect. Proper time 
is always measured by an observer at rest relative to the clock or any observed process 
being studied. Therefore, while observer 1 is moving on his railway car in Figure 4, 
the clock is moving along with him. Therefore, he is at rest relative to this clock and 
he measures the clock’s proper time. On the other hand, observer 2 sees the clock 
moving relative to her, so she does not measure the proper time. The time interval 
measured by an observer who is in relative motion with respect to a clock or process 
Dtm is always longer than the proper time of that clock or process.

When an observer is at rest relative to a clock or process, the start and end of the 
process occur at the same location for this observer. For the light clock in Figure 4, 
observer 1 might be standing next to the bottom mirror, so from his viewpoint the 
light pulse starts and ends at the same location. By comparison, for observer 2 in 
Figure 4, the light pulse begins at the bottom mirror when the clock is at the left and 
returns to this mirror when the clock is in a different location relative to this observer. 
Observer 2 therefore measures a longer time interval, Dtm. The proper time is always 
the shortest possible time that can be measured for a process, by any observer.

Time dilation is just one consequence of special relativity. In Section 11.3, you will 
learn that changes in time between frames of reference are accompanied by changes in 
length along the direction of motion. Therefore, it is not correct to think of time dilation 
as if it is an isolated effect. When you treat space and time as being interconnected, you 
will find it is easier to understand some of the contradictions of special relativity.

Tutorial 1 illustrates time dilation in a frame of reference moving close to the 
speed of light with respect to an observer in another frame of reference.

proper time (Dts)  the time interval 
measured by an observer at rest with 
respect to a clock

 

Tutorial 1  Determining Time Dilation

On Earth, an astronaut has a pulse of 75.0 beats/min. He travels 
into space in a spacecraft capable of reaching very high speeds.

(a) Determine the astronaut’s pulse with respect to a clock on 
Earth when the spacecraft travels at a speed of 0.10c.

(b) Determine the astronaut’s pulse with respect to a clock on 
Earth when the spacecraft travels at a speed of 0.90c.

Solution

(a) Given: 
1
Dts

5 75.0 beats/min; v 5 0.10c

Required: 
1
Dtm

Analysis: To calculate the time of one beat, take the 
reciprocal of the pulse rate. The process at rest in the 
moving reference frame is the time of one beat, which  
is the proper time, Dts. The time interval of the pulse as 
observed from Earth (Dtm) must be longer than the proper 
time because the astronaut (who is basically the same as 
the stationary clock in his reference frame) moves with 

respect to Earth. Use Dtm 5
Dts

Å1 2
v 2

c 2

 to calculate Dtm.

Sample Problem 1: Time Dilation for an Astronaut
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Solution:

 Dtm 5
Dts

Å1 2
v 2

c 2

      
5

a 1
75.0 beats/min

b

Å1 2
10.10c2 2

c 2

       
5

1.33 3 1022 min/beat

"1 2 0.102

       
5

1.33 3 1022 min/beat

"0.99
 Dtm 5 1.34 3 1022 min/beat (one extra digit carried)

Converting this result to a pulse rate yields

 pulse 5  
1
Dtm

         5
1

1.34 3 1022 min/beat
         5 74.6 beats/min
 pulse 5 75 beats/min

Statement: The observed pulse of the astronaut is 75 beats/min 
to two significant digits; however, the exact rate is slightly 
slower than his pulse in his own frame of reference (the 
spacecraft), or when he was on Earth and not moving with 
respect to Earth.

(b) Given: 
1
Dts

5 75.0 beats/min; v 5 0.90c

Required: 
1
Dtm

Analysis: Follow the same steps as in (a).

Solution: 

 Dtm 5
Dts

Å1 2
v 2

c 2

       
5

a 1
75.0 beats/min

b

Å1 2
10.90c2 2

c 2

       
5

1.33 3 1022 min/beat

"1 2 0.902

       5
1.33 3 1022 min/beat

"0.19
 Dtm 5 3.05 3 1022 min/beat (one extra digit carried)

Converting this result to a pulse rate yields

 pulse 5
1
Dtm

         5
1

3.05 3 1022 min/beat
 pulse 5 33 beats/min

Statement: The observed pulse of the astronaut is 
33 beats/min, which is much slower than his pulse in his  
own frame of reference (the spacecraft). This occurs because 
the speed of the spacecraft is close to the speed of light, 
which causes the time dilation to be large.

Practice
	 1. 	Determine how much longer a 1.00 s proper time interval appears to a stationary observer 

when a clock is moving with a speed of 0.60c.  T/I  [ans: 0.25 s]

	 2. 	A beam of particles travels at a speed of 2.4 3 108 m/s. Scientists in the laboratory measure 
the average lifetime of the particle in the beam as 3.7 3 1026 s. Calculate the average 
lifetime of the particles when they are at rest.  K/U T/I  [ans: 2.2 3 1026 s]

	 3. 	An 8.0 s interval as measured on a moving spacecraft is measured as 10.0 s on Earth. 
Calculate how fast, relative to Earth, the spacecraft is moving.  T/I  A  [ans: 1.8 3 108 m/s]

	 4. 	A spacecraft has a speed of 0.700c with respect to Earth. The crew of the spacecraft 
observes two events on Earth. According to the spacecraft’s clocks, the time between the 
events is 30.0 h.  K/U  T/I  A

		  (a) 	Calculate the proper time, in hours, between the two events. [ans: 21.4 h]

		  (b) 	What time interval does the crew measure when their craft travels at 0.950c ? [ans: 68.6 h]

	 5.	 Two astronauts travel to the Moon at a speed of 1.1 3 104 m/s. Their clock is accurate 
enough to detect time dilation.  T/I  C  A

		  (a)	 Determine the ratio of Dtm to Dts to nine decimal places. [ans: 1.000 000 001]

		  (b)	 What does your answer to (a) mean?
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Verification of Time Dilation
In the early twentieth century, very few experiments could confirm, much less test 
directly, the predicted results of special relativity. However, since 1905, scientists have 
performed and repeated many experiments that have confirmed time dilation. Two 
of these experiments are discussed briefly here.

Clocks and Passenger Jets
In the early 1970s, a series of experiments using atomic clocks took place. Atomic 
clocks use the vibrations of cesium atoms to measure time intervals very pre-
cisely. Four of these clocks were placed on separate jet aircraft and flown around 
the world twice. The purpose of this experiment, called the Hafele–Keating 
experiment after the two physicists who designed it, was to see if clocks moving at 
different speeds with respect to the centre of Earth run slower relative to a clock 
recording proper time.  CAREER LINK

One complication posed by the experiment is that Earth rotates. Thus, a clock on 
Earth’s surface is also a moving clock. To correct for this, one clock was placed on 
a plane moving westward against the rotation of Earth. This plane had the slowest 
speed and served as the clock to record the proper time for the system of clocks. 	
A clock on Earth’s surface was the next fastest-moving clock, and the clock on the 
plane flying east was moving fastest. In the final analysis of the data, the scientists 
made various corrections for gravitational effects as well as for the fact that none of 
the clocks were in a truly inertial frame.

The results showed that after two trips around the planet, the clock on Earth’s 
surface ran 273 billionths of a second (or 273 ns) slower than the westbound clock 
(proper time), and that the eastbound clock ran 59 ns slower than the Earth clock, or 
332 ns slower than the westbound clock. The error in these measurements was about 
25 ns. Later repetitions of the experiment improved the accuracy, and all have been 
consistent with the predicted time dilation.

RELATIVITY AND GPS
Location-based games are video games that use the player’s location as part of the 
software that the game uses (Figure 7). A typical form of this game is a treasure hunt, 
called geo-caching, that does not use a map. Rather, it uses a GPS (global positioning 
satellite) system to indicate exactly where the player is and when the player is close 
to certain items, such as “buried gold.” How is the computer able to know exactly 
where you are?

Satellites orbiting Earth send electromagnetic signals outward. A GPS computer 
on the ground determines from the signal the position of the satellite and the time 
it takes for the signal to arrive from the satellite. The computer gathers this data 
from three or more satellites and uses the speed of light (which for all satellites is 
the same) to determine its location on Earth. This simple procedure gives fairly 
good results. However, the speed of the signal is the speed of light, a very large 
number. So the error from just three measurements can be as much as a third of 
a kilometre and is usually only accurate to about 15 m. Adding a fourth satellite’s 
signal as a time correction for all the GPS satellite signals improves accuracy to 
within 10 m or better.  CAREER LINK

Relativity affects the long-term accuracy of the GPS system. Gravity affects the 
rate at which a clock runs (as described by the theory of general relativity) and 
must be corrected for. Another correction takes the fast relative motions of the 
satellites themselves into account. This matters because each satellite moves at 
nearly 3900 m/s with respect to Earth, causing time dilation. Without correction, 
these two kinds of relativistic effects cause the GPS system to lose accuracy by up 
to 11 km/day.  WEB LINK

Figure 7  Location-based games use 
GPS systems, which rely on relativistic 
corrections to operate with continuous 
high accuracy.

Analyzing Relativistic Data  
(page 604)
Now that you have learned how to 
calculate time dilation, perform the 
part of Investigation 11.2.1 that uses 
the time dilation equation.

Investigation	 11.2.1
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Questions

	 1. 	 Refer to the thought experiment in Figure 4 on 	
page 581. Explain what would have to be true about 
observer 2 for her to measure the same time on the 
light clock that observer 1 measures.  K/U  T/I

	 2. 	 A process takes place in a given amount of time.  K/U

(a) 	Does the process seem to take longer for an 
observer moving relative to the process, or for 
an observer at rest with respect to the process?

(b) 	Which observer measures the proper time of 
the process?

	 3. 	 Two identical clocks are synchronized. One clock 
stays on Earth, and the other clock orbits Earth 	
for one year, as measured by the clock on Earth. 	
After the year elapses, the orbiting clock returns 	
to Earth for comparison with the stationary 	
clock.  K/U

(a) 	Do the clocks remain synchronized?
(b) 	Will the clock that was in orbit run slower after 

it returns?
(c) 	 Will the clock that was in orbit have the same 

time as the clock that stayed on Earth or a 
different time?

(d) 	Does the clock that stayed on Earth have the 
wrong time? Explain.

(e) 	 Does the clock that was in orbit have the wrong 
time? Explain.

	 4. 	 Suppose an atomic clock is placed on a jet flying 
westward around Earth at a constant altitude. 	
The jet lands at the same airport from which it 
departed 8.64 3 104 s earlier. A similar clock at the 
airport was synchronized with respect to the clock 
on the plane before the plane took off. Determine 
which clock ran slower (ignore the various forces in 
the non-inertial frames of the two clocks). Explain 
your answer.  K/U  T/I  C

	 5. 	 Why do you think the accuracy of a GPS system 
depends on correcting satellite clocks for special 
relativity?  K/U  T/I  C  A

	 6. 	 Roger is travelling with a speed of 0.85c relative 
to Mia. Roger travels for 30 s as measured on his 
watch.  K/U  T/I  A

(a) 	Determine who measures the proper time for 
Roger’s trip, Roger or Mia. Explain your answer.

(b) 	Calculate the elapsed time on Mia’s watch 
during this motion.

	 7. 	 An astronaut travels at a speed of 0.95c away from 
Earth. The astronaut sends a light signal back to Earth 
every 1.0 s, as measured by her clock. An observer on 
Earth notes that these signals arrive at intervals equal 
to Dtm. Calculate the value of Dtm.  T/I  A

Summary

• 	 An observer in an inertial frame of reference will see the time in another 
inertial frame of reference as running slower.

• 	 The equation for time dilation is 
Dtm

Dts
5

1

Å1 2
v 2

c 2

, where v is the relative 

speed of an object (or observer) with respect to an observer, c is the speed of 
light, and Dts is the proper time of the object, as measured by an observer at 
rest with respect to the object. For v greater than zero, Dtm . Dts.

• 	 The value Å1 2
v 2

c 2 is undefined for v greater than c. No object can move at a 

speed greater than or equal to c.
• 	 Time dilation is a natural result of the two postulates of special relativity and 

the realization that the speed of light is the same for all observers.
• 	 Numerous experiments have provided evidence of time dilation, including the 

Hafele–Keating experiment using passenger jets and atomic clocks.
• 	 Time dilation, along with general relativity corrections, has to be taken into 

account to maintain the accuracy of GPS systems.

Review11.2
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