Section 10.4: Structural Safety

Section 10.4 Questions, page 465

1. Answers may vary. Sample answer:
 When a car is stuck in the snow, you should rock
 the tires back and forth rather than only trying to
 move them forward. The movement will create the
 resonating frequency, which will increase the
 amplitude of the movement, and will help get the
 car unstuck faster.

2. Answers may vary. Sample answer:
 Marching in unison across a swinging footbridge
 may cause aeroelastic flutter, which will add more
 energy to the vibrations than could be lost to
 natural damping. Extreme vibrations may cause
 the bridge to break.

3. Answers may vary. Sample answer:
 (a) Due to mechanical resonance, the energy from
 pendulum A transfers to pendulum E along their
 shared string. Pendulum E then starts resonating at
 the same frequency.
 (b) Pendulum A will stop swinging if pendulum E
 has a large amplitude swing.
 (c) Due to conservation of wave energy, the sum of
 their amplitudes must either remain the same or
 decrease.
 (d) Pendulum E should be dunked in the beaker.
 Then, any sympathetic vibrations will lose their
 energy in the water. Pendulum A will be damped
 because pendulum E is damped.

4. Answers may vary. Sample answer:
 Concrete walls are inflexible and can crack and
 collapse when vibrating at resonating frequency.
 Also, the methods used to reinforce concrete
 buildings are very expensive compared to other
 building technologies.

5. Answers may vary. Sample answer:
 Mechanical resonance: physical contact required;
 total mechanical energy is conserved.
 Aeroelastic flutter: no physical contact necessary;
 total energy may not be conserved.
 Both: high amplitudes produced; vibrations occur
 at natural frequency.

6. Answers may vary. Sample answer:
 There is significant disagreement among scientists
 on the primary cause of the collapse of the Tacoma
 Narrows Bridge. It may have been mechanical
 resonance where the wind’s energy was transferred
 into the concrete material of the bridge. Or, it
 could have been because of aeroelastic flutter where
 wind acted as a stimulator to negate natural
 damping.

7. Answers may vary. Sample answer:
 Reducing the size of floors as the elevation
 increases means there is less surface area for the
 wind to blow against and there is less mass higher
 up in the structure.
 Base isolation pads act as shock absorbers for a
 building, especially in an earthquake. They limit
 the building’s contact with the vibrating ground
 and dampen the waves passing into the building.