Chapter 2: Motion in Two Dimensions

Mini Investigation: Garbage Can Basketball, page 59

A. Answers may vary. Sample answer: When launched from knee height, an underhand upward thrust is used such that the ball of paper travels in a parabolic arc. When launched from waist height, a downward arm motion is used to direct the ball of paper to move in a curved trajectory downward into the trash can. When launched from shoulder height, an overhand upward thrust is used to launch the paper ball in a parabolic arc that allows it to land in the trash can.

Section 2.1: Motion in Two Dimensions—A Scale Diagram Approach

Tutorial 1 Practice, page 61

1. Answers may vary. Sample answer: I think a suitable scale would have the vectors be about 5 cm long. Looking at the smaller displacement, if I divide 350 by 100, I get 3.5. Then if I divide 410 by 100, I get 4.1. Since 3.5 cm and 4.1 cm are both suitable lengths for my vectors I choose a scale of 1 cm : 100 m.

Tutorial 2 Practice, page 64

1. (a) Given: $\Delta \vec{d}_1 = 72 \text{ cm [W]}; \ \Delta \vec{d}_2 = 46 \text{ cm [N]}$ Required: $\Delta \vec{d}_T$ Analysis: $\Delta \vec{d}_T = \Delta \vec{d}_1 + \Delta \vec{d}_2$

This figure shows the given vectors, with the tip of $\Delta \vec{d}_1$ joined to the tail of $\Delta \vec{d}_2$. The resultant vector $\Delta \vec{d}_T$ is drawn in black from the tail of $\Delta \vec{d}_1$ to the tip of $\Delta \vec{d}_2$. Using a compass, the direction of $\Delta \vec{d}_T$ is [W 33° N]. $\Delta \vec{d}_T$ measures 8.5 cm in length, so using the scale of 1 cm : 10 cm, the actual magnitude of $\Delta \vec{d}_T$ is 85 cm. **Statement:** The sum of the two vectors is 85 cm [W 33° N].

(b) Given: $\Delta \vec{d}_1 = 65.3 \text{ m} [\text{E } 42^\circ \text{ N}];$

 $\Delta \vec{d}_2 = 94.8 \text{ m [S]}$

Required: $\Delta \vec{d}_{T}$ **Analysis:** $\Delta \vec{d}_{T} = \Delta \vec{d}_{1} + \Delta \vec{d}_{2}$ Solution:

This figure shows the given vectors, with the tip of $\Delta \vec{d}_1$ joined to the tail of $\Delta \vec{d}_2$. The resultant vector $\Delta \vec{d}_T$ is drawn in black from the tail of $\Delta \vec{d}_1$ to the tip of $\Delta \vec{d}_2$. Using a compass, the direction of $\Delta \vec{d}_T$ is [W 46° S]. $\Delta \vec{d}_T$ measures 7.05 cm in length, so using the scale of 1 cm : 10 m, the actual magnitude of $\Delta \vec{d}_T$ is 70.5 m.

Statement: The sum of the two vectors is 70.5 m [W 46° S]. **2. (a) Given:** $\Delta \vec{d}_1 = 450$ m [W 35° S]; $\Delta \vec{d}_2 = 630$ m [W 60° N] **Required:** $\Delta \vec{d}_T$

Analysis: $\Delta \vec{d}_{T} = \Delta \vec{d}_{1} + \Delta \vec{d}_{2}$

Solution:

This figure shows the given vectors, with the tip of $\Delta \vec{d}_1$ joined to the tail of $\Delta \vec{d}_2$. The resultant vector $\Delta \vec{d}_1$ is drawn in black from the tail of $\Delta \vec{d}_1$ to the tip of $\Delta \vec{d}_2$. Using a compass, the direction of $\Delta \vec{d}_T$ is [W 23° N]. $\Delta \vec{d}_T$ measures 7.4 cm in length, so using the scale of 1 cm : 100 m, the actual magnitude of $\Delta \vec{d}_T$ is 740 m.

Statement: The sum of the two vectors is 740 m [W 23° N]. (b) Given: $\Delta \vec{d} = 740$ m [W 23° N]; $\Delta t = 77$ s

(b) Given: $\Delta d = 740 \text{ m} [\text{w} 23^{\circ} \text{N}]; \Delta t = 77 \text{ s}$ Required: \vec{v}_{av}

Analysis:
$$\vec{v}_{av} = \frac{\Delta d}{\Delta t}$$

Solution: $\vec{v}_{av} = \frac{\Delta \vec{d}}{\Delta t}$
$$= \frac{740 \text{ m} [\text{W } 23^{\circ} \text{ N}]}{77 \text{ s}}$$
 $\vec{v}_{av} = 9.6 \text{ m/s} [\text{W } 23^{\circ} \text{ N}]$

Statement: The cyclist's average velocity is 9.6 m/s [W 23° N].

2. Each vector can be written with the second direction first. The angle will then change to the complementary angle, so subtract the angle from 90°. For example, [S 15° E] becomes [E 75° S]. 3. (a) The length of $\Delta \vec{d}_1$ is 3.6 cm and the length of $\Delta \vec{d}_2$ is 5.7 cm. Using the scale of 1 cm : 100 m, the actual vector of $\Delta \vec{d}_1$ is 360 m [E] and the actual vector of $\Delta \vec{d}_2$ is 570 m [S]. (b) Given: Figure 11 Required: $\Delta \vec{d}_T$ Analysis: $\Delta \vec{d}_T = \Delta \vec{d}_1 + \Delta \vec{d}_2$

This figure shows the given vectors, with the tip of $\Delta \vec{d}_1$ joined to the tail of $\Delta \vec{d}_2$. The resultant vector $\Delta \vec{d}_1$ is drawn in black from the tail of $\Delta \vec{d}_1$ to the tip of $\Delta \vec{d}_2$. Using a compass, the direction of $\Delta \vec{d}_T$ is [E 58° S]. $\Delta \vec{d}_T$ measures 6.7 cm in length, so using the scale of 1 cm : 100 m, the actual magnitude of $\Delta \vec{d}_T$ is 670 m.

Statement: The sum of the two vectors is 670 m [E 58° S].

4. Given: $\Delta \vec{d}_1 = 300.0 \text{ m [S]}; \ \Delta \vec{d}_2 = 180.0 \text{ m [E]}$ **Required:** $\Delta \vec{d}_T$

Analysis: $\Delta \vec{d}_{T} = \Delta \vec{d}_{1} + \Delta \vec{d}_{2}$ Solution:

This figure shows the given vectors, with the tip of $\Delta \vec{d}_1$ joined to the tail of $\Delta \vec{d}_2$. The resultant vector $\Delta \vec{d}_1$ is drawn in black from the tail of $\Delta \vec{d}_1$ to the tip of $\Delta \vec{d}_2$. Using a compass, the direction of $\Delta \vec{d}_T$ is [S 31° E]. $\Delta \vec{d}_T$ measures 7.0 cm in length, so using the scale of 1 cm : 50 m, the actual magnitude of $\Delta \vec{d}_T$ is 350 m.

Statement: The taxi's total displacement is 350 m [S 31° E].

5. Given: $\Delta \vec{d}_1 = 10.0 \text{ km} [\text{N}]; \ \Delta \vec{d}_2 = 24 \text{ km} [\text{E}]$

Required: $\Delta \vec{d}_{T}$

Analysis: $\Delta \vec{d}_{T} = \Delta \vec{d}_{1} + \Delta \vec{d}_{2}$ **Solution:**

This figure shows the given vectors, with the tip of $\Delta \vec{d}_1$ joined to the tail of $\Delta \vec{d}_2$. The resultant vector $\Delta \vec{d}_T$ is drawn in black from the tail of $\Delta \vec{d}_1$ to the tip of $\Delta \vec{d}_2$. Using a compass, the direction of $\Delta \vec{d}_T$ is [N 67° E]. $\Delta \vec{d}_T$ measures 6.5 cm in length, so using the scale of 1 cm : 4 km, the actual

magnitude of $\Delta \vec{d}_{T}$ is 26 km. **Statement:** The total displacement of the two trips

is 26 km [N 67° E].

6. Yes, the answer would be the same. Whichever order the vectors are placed, the final position, which is what determines the sum of the vectors, stays the same.

7. Given: $\Delta \vec{d}_1 = 15 \text{ m} [\text{N } 23^\circ \text{ E}];$

$$\Delta \vec{d}_{2} = 32 \text{ m} [\text{S} 35^{\circ} \text{E}]$$

Required: $\Delta \vec{d}_{T}$

Analysis: $\Delta \vec{d}_{T} = \Delta \vec{d}_{1} + \Delta \vec{d}_{2}$

Solution:

This figure shows the given vectors, with the tip of $\Delta \vec{d}_1$ joined to the tail of $\Delta \vec{d}_2$. The resultant vector $\Delta \vec{d}_T$ is drawn in black from the tail of $\Delta \vec{d}_1$ to the tip of $\Delta \vec{d}_2$. Using a compass, the direction of $\Delta \vec{d}_T$ is [E 27° S]. $\Delta \vec{d}_T$ measures 5.4 cm in length, so using the scale of 1 cm : 5 m, the actual magnitude of $\Delta \vec{d}_T$ is 27 m.

Statement: The horse's total displacement is 27 m [E 27° S].

8. (a) Given:
$$\Delta d_1 = 28 \text{ m} [\text{E } 35^\circ \text{ S}];$$

$$\Delta d_2 = 45 \text{ m [S]}; \Delta t = 6.9 \text{ s}$$

Required: \vec{v}_{av}

Analysis:
$$\vec{v}_{av} = \frac{\Delta \vec{d}_{T}}{\Delta t}$$

Solution:

This figure shows the given vectors, with the tip of $\Delta \vec{d}_1$ joined to the tail of $\Delta \vec{d}_2$. The resultant vector $\Delta \vec{d}_T$ is drawn in black from the tail of $\Delta \vec{d}_1$ to the tip of $\Delta \vec{d}_2$. Using a compass, the direction of $\Delta \vec{d}_T$

is [E 69° S]. $\Delta \vec{d}_{\rm T}$ measures 6.55 cm in length, so using the scale of 1 cm : 10 m, the actual magnitude of $\Delta \vec{d}_{\rm T}$ is 65.5 m.

$$\vec{v}_{av} = \frac{\Delta \vec{d}_{T}}{\Delta t}$$
$$= \frac{65.5 \text{ m} [\text{E } 69^{\circ} \text{ S}]}{6.9 \text{ s}}$$
$$\vec{v} = 9.5 \text{ m/s} [\text{E } 69^{\circ} \text{ S}]$$

Statement: The car's average velocity is 9.5 m/s [E 69° S]. (b) Given: $d_1 = 28$ m; $d_2 = 45$ m; $\Delta t = 6.9$ s

(b) Given: $a_1 - 28$ m, $a_2 - 43$ m, $\Delta t - 6.9$ Required: v_{av}

Analysis: $v_{av} = \frac{\Delta d_T}{\Delta t}$ $v_{av} = \frac{d_1 + d_2}{\Delta t}$ Solution: $v_{av} = \frac{d_1 + d_2}{\Delta t}$ $= \frac{28 \text{ m} + 45 \text{ m}}{6.9 \text{ s}}$ $v_{av} = 11 \text{ m/s}$

Statement: The car's average speed is 11 m/s. **9. (a) Given:** $\Delta \vec{d}_1 = 100.0 \text{ km} [\text{N } 30^\circ \text{ E}];$

 $\Delta \vec{d}_2 = 50.0 \text{ km} [\text{W}]$

Required: $\Delta \vec{d}_{T}$

Analysis:
$$\Delta \vec{d}_{T} = \Delta \vec{d}_{1} + \Delta \vec{d}_{2}$$

Solution:

This figure shows the given vectors, with the tip of $\Delta \vec{d}_1$ joined to the tail of $\Delta \vec{d}_2$. The resultant vector $\Delta \vec{d}_T$ is drawn in black from the tail of $\Delta \vec{d}_1$ to the tip of $\Delta \vec{d}_2$. Using a compass, the direction of $\Delta \vec{d}_T$ is [N]. $\Delta \vec{d}_T$ measures 8.7 cm in length, so using the scale of 1 cm : 10 km, the actual magnitude of $\Delta \vec{d}_T$ is 87 km. **Statement:** The aircraft's total displacement is

Statement: The aircraft's total displacement is 87 km [N].

(b) Given: $\Delta \vec{d}_{\rm T} = 87 \text{ km} [\text{N}]; \Delta t = 10.0 \text{ min}$

Required: \vec{v}_{av}

Analysis:
$$\vec{v}_{av} = \frac{\Delta \vec{d}_{T}}{\Delta t}$$

Solution: $\vec{v}_{av} = \frac{\Delta \vec{d}_{T}}{\Delta t}$
 $= \frac{87 \text{ km [N]}}{10.0 \text{ prin}} \left(\frac{60 \text{ prin}}{1 \text{ h}}\right)$
 $\vec{v}_{av} = 5.2 \times 10^{2} \text{ km/h [N]}$

Statement: The aircraft's average velocity is 5.2×10^2 km/h [N] or 520 km/h [N].