Section 1.5: Five Key Equations for Motion with Uniform Acceleration

Tutorial 1 Practice, page 39

1. Given: $\vec{v}_i = 0 \text{ m/s}$; $\Delta \vec{d} = 17 \text{ m [E]}$; $\Delta t = 3.8 \text{ s}$

Required: \vec{v}_f

Analysis:
$$\Delta \vec{d} = \left(\frac{\vec{v}_f + \vec{v}_i}{2}\right) \Delta t$$

$$\vec{v}_f = 2\frac{\Delta \vec{d}}{\Delta t} - \vec{v}_i$$

Solution:
$$\vec{v}_f = 2\frac{\Delta \vec{d}}{\Delta t} - \vec{v}_i$$

= $2\left(\frac{17 \text{ m [E]}}{3.8 \text{ s}}\right) - 0 \text{ m/s}$
 $\vec{v}_f = 8.9 \text{ m/s [E]}$

Statement: Her final velocity is 8.9 m/s [E]. **2. Given:** $\vec{v}_i = 0$ m/s, $\Delta \vec{d} = 70.0$ m [downhill];

 $\Delta t = 5.3 \text{ s};$ **Required:** \vec{a}_{av}

Analysis:
$$\Delta \vec{d} = \vec{v}_i \Delta t + \frac{1}{2} \vec{a}_{av} \Delta t^2$$

$$\vec{a}_{\rm av} = 2 \frac{\Delta \vec{d} - \vec{v}_{\rm i} \, \Delta t}{\Delta t^2}$$

Solution:
$$\vec{a}_{av} = 2 \frac{\Delta \vec{d} - \vec{v}_i \Delta t}{\Delta t^2}$$

$$= 2 \left(\frac{70 \text{ m [downhill]} - \left(0 \frac{\text{m}}{\text{g}}\right) \left(5.3 \text{ g}\right)}{\left(5.3 \text{ s}\right)^2} \right)$$

$$\vec{a}_{av} = 5.0 \text{ m/s}^2 \text{ [downhill]}$$

Statement: The uniform acceleration experienced by the child is 5.0 m/s^2 [downhill].

Section 1.5 Questions, page 39

1. Given: $\vec{v}_i = 0 \text{ m/s}$; $\vec{a}_{av} = 2.0 \text{ m/s}^2 \text{ [N]}$; $\Delta t = 15 \text{ s}$

Required: $\Delta \vec{d}$

Analysis: $\Delta \vec{d} = \vec{v}_i \Delta t + \frac{1}{2} \vec{a}_{av} \Delta t^2$

Solution:

$$\Delta \vec{d} = \vec{v}_i \Delta t + \frac{1}{2} \vec{a}_{av} \Delta t^2$$

$$= \left(0 \frac{m}{g}\right) \left(15 g\right) + \frac{1}{2} \left(2.0 \frac{m}{g^2} [N]\right) \left(15 g\right)^2$$

$$\Delta \vec{d} = 2.3 \times 10^2 m [N]$$

Statement: The displacement of the car is

230 m [N] or 2.3×10^2 m [N].

2. (a) Given: $\vec{v}_s = 20.0 \text{ m/s} \text{ [E]}; \ \vec{v}_s = 0 \text{ m/s};$

 $\Delta t = 12 \text{ s}$

Required: \vec{a}_{av}

Analysis: $\vec{v}_f = \vec{v}_i + \vec{a}_{av} \Delta t$

$$\vec{a}_{\rm av} = \frac{\vec{v}_{\rm f} - \vec{v}_{\rm i}}{\Delta t}$$

Solution:
$$\vec{a}_{av} = \frac{\vec{v}_f - \vec{v}_i}{\Delta t}$$

$$= \frac{0 \frac{m}{s} - 20.0 \frac{m}{s} [E]}{12 s}$$

$$= \frac{0 \frac{m}{s} + 20.0 \frac{m}{s} [W]}{12 s}$$

$$\vec{a}_{av} = 1.7 \text{ m/s}^2 \text{ [W]}$$

Statement: The uniform acceleration of the

spacecraft is 1.7 m/s² [W].

(b) Given:
$$\vec{v}_i = 20.0 \text{ m/s} \text{ [E]}; \ \vec{v}_f = 0 \text{ m/s};$$

 $\Delta t = 12 \text{ s}$

Required: $\Delta \vec{d}$

Analysis:
$$\Delta \vec{d} = \left(\frac{\vec{v}_{\rm f} + \vec{v}_{\rm i}}{2}\right) \Delta t$$

Solution:
$$\Delta \vec{d} = \left(\frac{\vec{v}_f + \vec{v}_i}{2}\right) \Delta t$$

$$= \left(\frac{0.0 \frac{\mathrm{m}}{\mathrm{g}} + 20.0 \frac{\mathrm{m}}{\mathrm{g}} [\mathrm{E}]}{2}\right) (12 \,\mathrm{g})$$

$$\Delta \vec{d} = 1.2 \times 10^2 \text{ m [E]}$$

Statement: The displacement of the spacecraft is $120 \text{ m} [\text{E}] \text{ or } 1.2 \times 10^2 \text{ m} [\text{E}].$

3. Given:
$$\vec{v_i} = 15 \text{ m/s [W]}$$
; $\vec{a_{av}} = 7.0 \text{ m/s}^2 \text{ [E]}$;

 $\Delta t = 4.0 \text{ s}$

Required: $\vec{v}_{\rm f}$

Analysis:
$$\vec{v}_f = \vec{v}_i + \vec{a}_{av} \Delta t$$

Solution:
$$\vec{v}_f = \vec{v}_i + \vec{a}_{av} \Delta t$$

= 15
$$\frac{\text{m}}{\text{s}}$$
 [W] + $\left(7.0 \frac{\text{m}}{\text{s}^{2}}\right)$ [E] $\left(4.0 \text{ s}\right)$

$$=-15 \frac{m}{s} [E] + 28 \frac{m}{s} [E]$$

$$\vec{v}_{\rm f} = 13 \text{ m/s [E]}$$

Statement: The final velocity of the helicopter is 13 m/s [E].

4. For go-cart A:

Given: v = 20.0 m/s; $\Delta d = 1.0 \text{ km}$

Required: Δt

Analysis:
$$v = \frac{\Delta d}{\Delta t}$$

$$\Delta t = \frac{\Delta d}{v}$$

Solution:
$$\Delta t = \frac{\Delta d}{v}$$

$$= \frac{1.0 \text{ km}}{20.0 \text{ m}} \left(\frac{1000 \text{ m}}{1 \text{ km}} \right)$$

$$\Delta t = 50 \text{ s}$$

Statement: Go-cart A takes 50 s to go around the track.

For go-cart B:

Given: $v_i = 0 \text{ m/s}$; $a = 0.333 \text{ m/s}^2$; $\Delta d = 1.0 \text{ km}$

Required: Δt

Analysis:
$$\Delta d = v_i \Delta t + \frac{1}{2} a_{av} \Delta t^2$$

$$\Delta d = (0 \text{ m/s}) \Delta t + \frac{1}{2} a_{\text{av}} \Delta t^2$$

$$\Delta t^2 = 2 \frac{\Delta d}{a_{\rm av}}$$

Solution:
$$\Delta t^2 = 2 \frac{\Delta d}{a}$$

$$= 2 \frac{1.0 \text{ km}}{0.333 \frac{\text{yr}}{\text{s}^2}} \left(\frac{1000 \text{ yr}}{1.0 \text{ km}} \right)$$

$$\Delta t^2 = 6000 \text{ s}^2$$

$$\Delta t = 77 \text{ s}$$

Statement: Go-cart B takes 77 s to go around the track. This time is greater than Go-cart A, which took 50 s. Go-cart A wins the race by 27 s.

5. Given: $v_i = 5.0 \text{ m/s}$; $v_f = 7.5 \text{ m/s}$; $\Delta d = 50.0 \text{ m}$

Required: a_{av}

Analysis:
$$v_{\rm f}^{2} = v_{\rm i}^{2} + 2a_{\rm av} \Delta d$$

$$a_{\rm av} = \frac{v_{\rm f}^2 - v_{\rm i}^2}{2\Delta d}$$

Solution:
$$a_{av} = \frac{v_f^2 - v_i^2}{2\Delta d}$$

$$= \frac{\left(7.5 \frac{\text{m}}{\text{s}}\right)^2 - \left(5.0 \frac{\text{m}}{\text{s}}\right)^2}{2(50.0 \text{ m})}$$

$$= \frac{56.25 \frac{\text{m}^2}{\text{s}^2} - 25.00 \frac{\text{m}^2}{\text{s}^2}}{100 \text{ pr}}$$

$$a_{av} = 0.31 \text{ m/s}^2$$

$$a_{av} = 0.31 \text{ m/s}^2$$

Statement: The boat's average acceleration is 0.31 m/s^2 .

6. (a) Given: $\Delta \vec{d} = 4.50 \times 10^2 \text{ m [up]}; \Delta t = 4.0 \text{ s};$

 $\vec{v}_i = 0 \text{ m/s}$

Required: \vec{a}_{xy}

Analysis:
$$\Delta \vec{d} = \vec{v}_i \Delta t + \frac{1}{2} \vec{a}_{av} \Delta t^2$$

$$\vec{a}_{\rm av} = 2 \frac{\Delta \vec{d} - \vec{v}_{\rm i} \, \Delta t}{\Delta t^2}$$

Solution:
$$\vec{a}_{av} = 2 \frac{\Delta \vec{d} - \vec{v}_i \Delta t}{\Delta t^2}$$

$$= 2 \frac{4.5 \times 10^2 \text{ m [up]} - \left(0 \frac{\text{m}}{\text{g}}\right) \left(4.0 \text{ g}\right)}{\left(4.0 \text{ s}\right)^2}$$

$$\vec{a}_{av} = 56 \text{ m/s}^2 \text{ [up]}$$

Statement: The spacecraft's acceleration is 56 m/s² [vp]

(b) Given: $\Delta \vec{d} = 4.50 \times 10^2 \text{ m [up]}; \Delta t = 4.0 \text{ s};$

$$\vec{v}_1 = 0 \text{ m/s}; \ \vec{a}_{av} = 56 \text{ m/s}^2 \text{ [up]}$$

Required: \vec{v}_f

Analysis: $\vec{v}_{f} = \vec{v}_{i} + \vec{a}_{gas} \Delta t$

Solution: $\vec{v}_{\varepsilon} = \vec{v}_{i} + \vec{a}_{cv} \Delta t$

$$=0 \frac{m}{s} + \left(56 \frac{m}{s^2} [up]\right) (4.0 g)$$

$$\vec{v}_{\rm f} = 2.2 \times 10^2 \text{ m/s [up]}$$

Statement: After 4.0 s, the velocity of the spacecraft is 220 m/s [up] or 2.2×10^2 m/s [up]. 7. Answers may vary. Sample answer: Since Equation 4 does not include Δt , isolate Δt in Equations 1 and 2, then set them equal to each other.

Equation 1:

$$\Delta \vec{d} = \left(\frac{\vec{v}_{f} + \vec{v}_{i}}{2}\right) \Delta t$$
$$\Delta t = \frac{2\Delta \vec{d}}{\vec{v}_{f} + \vec{v}_{i}}$$

Equation 2:

$$\begin{aligned} \vec{v}_{\mathrm{f}} &= \vec{v}_{\mathrm{i}} + \vec{a}_{\mathrm{av}} \, \Delta t \\ \Delta t &= \frac{\vec{v}_{\mathrm{f}} - \vec{v}_{\mathrm{i}}}{\vec{a}_{\mathrm{av}}} \\ \Delta t &= \Delta t \\ \frac{2 \, \Delta \vec{d}}{\vec{v}_{\mathrm{f}} + \vec{v}_{\mathrm{i}}} &= \frac{\vec{v}_{\mathrm{f}} - \vec{v}_{\mathrm{i}}}{\vec{a}_{\mathrm{av}}} \\ 2 \vec{a}_{\mathrm{av}} \, \Delta \vec{d} &= \vec{v}_{\mathrm{f}}^{\; 2} - \vec{v}_{\mathrm{i}}^{\; 2} \\ \vec{v}_{\mathrm{f}}^{\; 2} &= \vec{v}_{\mathrm{i}}^{\; 2} + 2 \vec{a}_{\mathrm{av}} \, \Delta \vec{d} \end{aligned}$$

Since Equation 5 does not include \vec{v}_i , isolate \vec{v}_i in Equations 1 and 2, then set them equal to each other.

Equation 1:

$$\begin{split} \Delta \vec{d} &= \left(\frac{\vec{v}_{\mathrm{f}} + \vec{v}_{\mathrm{i}}}{2}\right) \Delta t \\ \vec{v}_{\mathrm{f}} &+ \vec{v}_{\mathrm{i}} = \frac{2\Delta \vec{d}}{\Delta t} \\ \vec{v}_{\mathrm{i}} &= \frac{2\Delta \vec{d}}{\Delta t} - \vec{v}_{\mathrm{f}} \end{split}$$

Equation 2:

$$\vec{v}_{\mathrm{f}} = \vec{v}_{\mathrm{i}} + \vec{a}_{\mathrm{av}} \Delta t$$

$$\vec{v}_{\mathrm{i}} = \vec{v}_{\mathrm{f}} - \vec{a}_{\mathrm{av}} \Delta t$$

$$\vec{v}_{\mathrm{i}} = \vec{v}_{\mathrm{f}}$$

$$\frac{2\Delta \vec{d}}{\Delta t} - \vec{v}_{\mathrm{f}} = \vec{v}_{\mathrm{f}} - \vec{a}_{\mathrm{av}} \Delta t$$

$$\frac{2\Delta \vec{d}}{\Delta t} = 2\vec{v}_{\mathrm{f}} - \vec{a}_{\mathrm{av}} \Delta t$$

$$2\Delta \vec{d} = (2\vec{v}_{\mathrm{f}} - \vec{a}_{\mathrm{av}} \Delta t) \Delta t$$

$$2\Delta \vec{d} = 2\vec{v}_{\mathrm{f}} \Delta t - \vec{a}_{\mathrm{av}} \Delta t^{2}$$

$$\Delta \vec{d} = \vec{v}_{\mathrm{f}} \Delta t - \frac{1}{2} \vec{a}_{\mathrm{av}} \Delta t^{2}$$