Date: _____

Name: ______

Name: _____ Chapter 9 Optimization Review

	Desired Shape	What you are given	The following equations will be useful:
Maximizing a rectangular area given its perimeter	With 4 sides of fencing	Perimeter	P = 4w A = I x w or A = w ²
	With 3 sides of Fencing w 2w	Perimeter	P = 4w A= I x w or A= 2w ²
	With 2 sides of fencing w	Perimeter	P = 2w A = I x w or A = w ²
Minimizing the surface area of a square-based prism	S	Volume	$V = s^3$
Maximizing the volume of a square-based prism	s s	Surface Area	SA = 6s ²
Maximizing the volume of a cylinder	h = d or $h = 2r$ $2r$	Surface Area	Substituting h = 2r into SA = $2\pi r^2 + 2\pi rh$, we get SA = $2\pi r^2 + 2\pi r(2r)$ SA = $2\pi r^2 + 4\pi r^2$ SA = $6\pi r^2$
Minimizing the surface area of a cylinder	h = d or $h = 2r$ $2r$	Volume	Substituting $h = 2r$ into $V = \pi r^2 h$, we get $V = \pi r^2 (2r)$ $V = 2\pi r^3$