\qquad
\qquad

Worksheets - Optimization of Cylinders (Minimize SA and Maximize Volume)

(9.5) - Key Concepts for Maximizing the volume of a cylinder

- The maximum volume for a given surface area of a cylinder occurs when its height equals its diameter. That is, $h=d$ or $h=2 r$
- The dimensions of the cylinder with maximum volume for a given surface area can be found by solving the formula: $S A=6 \pi r^{2}$
- and the height will be twice that value, or $2 r$
\Rightarrow Substitute $h=2 r$ into the formula to solve for the SA formula above:
$S A=2 \pi r^{2}+2 \pi h$
$5 A=2 \pi r^{2}+2 \pi r(2 r)$
$5 A=2 \pi r^{2}+4 \pi r^{2}$
$S A=6 \pi r^{2}$
$>$ Rearrange the formula to solve for height:

$$
\begin{gathered}
S A=2 \pi r^{2}+2 \pi r h \\
S A-2 \pi r^{2}=2 \pi r h \\
\frac{S A-2 \pi r^{2}}{2 \pi r}=h
\end{gathered}
$$

ia. Find the dimensions of a cylinder with maximum volume that can be made with $600 \mathrm{~cm}^{2}$ of aluminum. Round the dimensions to the nearest hundredth of a centimetre. ir

$$
S A=6 \pi r^{2}
$$

$$
100=\pi r^{2}
$$

$$
600=6 \pi r^{2}
$$

$$
\therefore \text { radios is } 5.64 \mathrm{~cm} \text {, }
$$

$$
100 \text { the height is } 2 r
$$

$$
2(\mathrm{s.64})=11.28 \mathrm{~cm}
$$

$$
5.64=r
$$

b. What is the volume of this cylinder, to the nearest cubic centimetre?

$$
\begin{aligned}
& V=\pi r^{2 h} \\
& V=\pi(5.64)^{2}(11.28) \\
& V=1127 \mathrm{~cm}^{3}
\end{aligned}
$$

(9.6) - Minimize the Surface Area of a Cylinder

- The minimum surface area for a given volume of a cylinder occurs when its height equals its
\qquad diameter. That is, \qquad or \qquad $h=2 r$
- The dimensions of the cylinder of minimum surface area for a given volume can be found by solving the formula: $V=2 \pi 13$
- and the height will be \qquad twice that value, or \qquad $2 r$
- Substitute $h=2 r$ into the formula to solve for the V formula above:

$$
\begin{aligned}
& V=\pi r^{2} h \\
& V=\pi r^{2}(2 r) \\
& V=2 \pi r^{3}
\end{aligned}
$$

2a. Determine the least amount of aluminum required to construct a cylindrical can with a 1 litre capacity, to the nearest square centimetre.

$$
16=1000 \mathrm{~cm}^{3} \rightarrow \mathrm{Valvmc}
$$

$$
1000-2 \pi r^{3} \quad 5 A=2 \pi r^{2}+2 \pi r h
$$

$$
S A=2 \pi(5.48)^{2}+2 \pi(5.42)(10.84)
$$

$$
\frac{500}{\pi}=13
$$

C $5 A=554 \mathrm{~cm}^{2}$
 needed ta hold 16
b. Describe any assumptions made.

- do not take into acesunt extra aluminum

require for the seam along the lateral
surface
- top /bottom edges, more likely

