Name:

Date: _____

2r

2πr

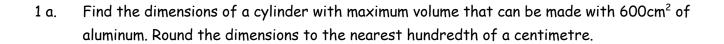
h = 2r

Worksheets - Optimization of Cylinders (Minimize SA and Maximize Volume)

(9.5) - Key Concepts for Maximizing the volume of a cylinder

- The maximum volume for a given surface area of a cylinder occurs when its height equals its ______. That is, ______ or ______
- The dimensions of the cylinder with maximum volume for a given surface area can be found by solving the formula:
- and the height will be ______ that value, or ______
- Substitute h = 2r into the formula to solve for the SA formula above:

> Rearrange the surface area formula to solve for height:



b. What is the volume of this cylinder, to the nearest cubic centimetre?

(9.6) - Minimize the Surface Area of a Cylinder

- The minimum surface area for a given volume of a cylinder occurs when its height equals its ______. That is, ______ or _____
- The dimensions of the cylinder of minimum surface area for a given volume can be found by solving the formula:
- and the height will be _____ that value, or _____
- Substitute h = 2r into the formula to solve for the V formula above:

- 21
- 2 a. Determine the least amount of aluminum required to construct a cylindrical can with a 1 litre capacity, to the nearest square centimetre.

b. Describe any assumptions made.