```
Optimization in 3D - part 1 cylinder
```

You have been hired by Husky Cola to design a new pop can. Husky wants the can to have a volume of $355 \mathrm{~cm}^{3}$. Your job is to find the dimensions (radius and height) of the pop can that would minimize the amount of aluminum needed to make the can.

$$
A=2 \pi r h+2 \pi r^{2} \quad V=\pi r^{2} h
$$

1. Suppose that the radius of your pop can were 2 centimetres. What would be the height?
$V=355 \mathrm{~cm}^{3}$
a. Rearrange the formula for Volume to solve it for h, the height.

b. Substitute $355 \mathrm{~cm}^{3}$ for V and 2 cm for r in the formula and solve for h.

$$
h=28.25 \mathrm{~cm}
$$

2. Using a radius of 2 cm and the height that you calculated above, calculate the surface area of the can.

$$
\begin{aligned}
& S A=2 \pi r h+2 \pi r^{2} \\
& S A=2 \pi(2)(28.25)+2 \pi(2)^{2} \\
& S A=380.13 \mathrm{~cm}^{2}
\end{aligned}
$$

3. Repeat this process (find h, then find A) to complete the table for different values of r.

Radius (cm)	Height (cm)	Surface Area $\left(\mathrm{cm}^{2}\right)$
2.0	28.25	380.13
2.5	18.08	323.27
3.0	12.56	293.30
3.5	9.22	279.72
4.0	7.06	277.96
4.5	5.58	285.00
5.0	4.52	299.07

4. Make a prediction about how the radius should relate to the height of a cylinder in order to minimize the surface area. when the height is twice the radius, the $S A$ will be minimized (the smallest)
```
Optimization in 3d - part 2 square-based prism
```

You have been hired by the Husky Juice Company to design a new container. Husky wants the container to have a volume of $355 \mathrm{~cm}^{3}$. Your job is to find the dimensions (length and height) of a square-based prism container $(w=1)$ that would minimize the amount of cardboard used.

$$
A=21^{2}+41 h \quad V=1^{2} h
$$

1. Suppose that the length of your juice container were 5 centimetres. What would be the height?
a. Rearrange the formula for Volume to solve it for h, the height.

$$
V=l^{2} \cdot h
$$

b. Substitute $355 \mathrm{~cm}^{3}$ for V and 5 cm for 1 in the formula and solve for h.

$$
\frac{35 s}{s^{2}}=h
$$

$$
h=14.2 \mathrm{~cm}
$$

2. Using a length of 5 cm and the height that you calculated above, calculate the surface area of the container.

$$
\begin{aligned}
& S A=2 l^{2}+4 l h \\
& S A=2(5)^{2}+4(5)(14,2) \\
& S A=334 \mathrm{~cm}^{2}
\end{aligned}
$$

3. Repeat this process (find h, then find A) to complete the table for different values of 1 .

Length (cm)	Height (cm)	Surface Area $\left(\mathrm{cm}^{2}\right)$
5.0	14.2	334
5.5	11.73	318.56
6.0	9.86	308.64
6.5	8.40	302.9
7.0	7.24	300.72
7.5	6.31	301.8
8.0	5.54	305.28

4. Make a prediction about how the length should relate to the height of a square-based prism in order to minimize the surface area.
when the height is equal to the length, the $S A$ will be minimized (the 5 mallest)
