You have been hired by Husky Cola to design a new pop can. Husky wants the can to have a volume of 355 cm³. Your job is to find the dimensions (radius and height) of the pop can that would minimize the amount of aluminum needed to make the can.

$$A = 2\pi r h + 2\pi r^2 \qquad \qquad V = \pi r^2 h$$

1. Suppose that the radius of your pop can were 2 centimetres. What would be the height? a. Rearrange the formula for Volume to solve it for h, the height. V=355cm³

[=ZCM

V= tr2h

b. Substitute 355 cm³ for V and 2 cm for r in the formula and solve for h.

$$\frac{355}{\pi (2)^2} = h$$

h=28.25cm

2. Using a radius of 2 cm and the height that you calculated above, calculate the surface area of the can.

$$SA = 2\pi (h + 2\pi (2))$$

$$SA = 2\pi (2) (28, 25) + 2\pi (2)^{2}$$

$$SA = 380.13 (m^{2})$$

3. Repeat this process (find h, then find A) to complete the table for different values of r.

Radius (cm)	Height (cm)	Surface Area (cm ²)
2.0	28.25	380,13
2.5	18,08	323,27
3.0	12.56	293.30
3.5	9,22	279.72
4.0	7,06	277,96
4.5	5.58	285.00
5.0	4.52	299.07

4. Make a prediction about how the radius should relate to the height of a cylinder in order to

when the height is twice the radius, the SA will be minimized (the smallest)

You have been hired by the Husky-Juice Company to design a new container. Husky wants the container to have a volume of 355 cm³. Your job is to find the dimensions (length and height) of a square-based prism container (w = 1) that would minimize the amount of cardboard used.

 $A = 21^2 + 41h$ $V = 1^2h$

1. Suppose that the length of your juice container were 5 centimetres. What would be the height?

a. Rearrange the formula for Volume to solve it for h, the height.

l=Sem

b. Substitute 355 cm³ for V and 5 cm for 1 in the formula and solve for h.

$$\frac{555}{5^2} = h$$

 $h = 14.2 \text{ cm}$

2. Using a length of 5 cm and the height that you calculated above, calculate the surface area of the container.

$$SA = 2l^{2} + 4lh$$

 $SA = 2(5)^{2} + 4(5)(14,2)$
 $SA = 334 cm^{2}$

3. Repeat this process (find h, then find A) to complete the table for different values of 1.

	Length (cm)	Height (cm)	Surface Area (cm ²)
	5.0	14.2	334
	5.5	11,73	318.56
	6.0	9.86	308.64
	6.5	8,40	302,9
1	7.0	7.24	300,72
	7.5	6.31	301,8
	8.0	5.54	305,28

4. Make a prediction about how the length should relate to the height of a square-based prism in order to minimize the surface area.

when the height is equal to the length, the SA will be minimized (the smallest)

MPM1D1: Optimization Pop Can and Juice Container