Optimization in 3D - part 1

You have been hired by Husky Cola to design a new pop can. Husky wants the can to have a volume of 355 cm³. Your job is to find the dimensions (radius and height) of the pop can that would minimize the amount of aluminum needed to make the can.

$$A = 2\pi rh + 2\pi r^2 \qquad V = \pi r^2 h$$

- 1. Suppose that the radius of your pop can were 2 centimetres. What would be the height?
 - a. Rearrange the formula for Volume to solve it for h, the height.

- b. Substitute 355 cm 3 for V and 2 cm for r in the formula and solve for h.
- 2. Using a radius of 2 cm and the height that you calculated above, calculate the surface area of the can.
- 3. Repeat this process (find h, then find A) to complete the table for different values of r.

Radius (cm)	Height (cm)	Surface Area (cm ²)
2.0		
2.5		
3.0		
3.5		
4.0		
4.5		
5.0		

4. Make a prediction about how the radius should relate to the height of a cylinder in order to minimize the surface area.

Optimization in 3d - part 2

You have been hired by the Husky Juice Company to design a new container. Husky wants the container to have a volume of 355 cm³. Your job is to find the dimensions (length and height) of a square-based prism container (w = 1) that would minimize the amount of cardboard used.

$$A = 21^2 + 41h$$
 $V = 1^2h$

- 1. Suppose that the length of your juice container were 5 centimetres. What would be the height?
 - a. Rearrange the formula for Volume to solve it for $\,h$, the height.

- b. Substitute 355 cm 3 for V and 5 cm for 1 in the formula and solve for h.
- 2. Using a length of 5 cm and the height that you calculated above, calculate the surface area of the container.
- 3. Repeat this process (find h, then find A) to complete the table for different values of 1.

Length (cm)	Height (cm)	Surface Area (cm ²)
5.0		
5.5		
6.0		
6.5		
7.0		
7.5		
8.0		

4. Make a prediction about how the length should relate to the height of a square-based prism in order to minimize the surface area.