# Strand 1:

# Number Sense & Algebra

# 1-1 Exponent Laws:

# **Key Concepts**

Terminology:



Multiplication Law: where multiplying powers with the SAME BASE you ADD the

EXPONENTS. 
$$(a^n)(a^m) = a^{n+m}$$

Division Law: where dividing powers with the SAME BASE you SUBTRACT the

EXPONENTS. 
$$\frac{a^n}{a^m} = a^{n-m}$$

**Power Law:** where there is a power of a power you MULTIPLY the EXPONENTS  $(a^n)^m = a^{nm}$ 

# 1-2 Polynomials:

# **Key Concepts**

Polynomial: terms that are separated by addition and/or subtraction

- Can be classified according to their number of terms: monomial (1 term), binomial (2 terms), trinomial (3 terms).



**Term**: has a coefficient and/or a variable (exponent on variable must be a natural number)

**Coefficient**: the number and the sign that is in front of the variable

**Degree:** the value of the exponent on the variable

A constant: a term that does not have a variable

**Like terms**: terms that have the same variable with the same exponent, only like terms can be added or subtracted

# 1-3 Distributive Property:

# **Key Concepts**

**Distributive Property:** distribute the term or constant to each term or constant inside the parentheses.

$$a(b+c) = ab + ac$$

# **1-4 Solving Equations:**

# **Key Concepts**

**Equation:** contains two expressions which are equivalent. For example: 2x+3=7

**Expression:** a representation of a quantity. For example: 7x+1

**Solving Equations:** solve multi-step equations by applying inverse order of operations

\*\*KEEP IT SIMPLE: Eliminate fractions as early as possible by MULTIPLYING by the DENOMINATOR

# Strand 2:

# Measurement & Geometry

# 2-1 Pythagorean Theorem:

# **Key Concepts**

**Hypotenuse:** the longest side of the right triangle, opposite to the  $90^{\circ}$  angle.

**Pythagorean Theorem:** in a right angle triangle, the square of the length of the hypotenuse is equal to the sum of the squares of the lengths of the two shorter sides.

$$a^2 + b^2 = c^2$$

#### 2-2 Optimization:

# **Key Concepts**

**Optimization**: creating the largest or smallest area or perimeter given restrictions.

**Maximum area:** when obtaining a maximum rectangular area:

-enclose 2 or 4 sides forming a square

-enclose 3 sides forming a rectangle where the length is double the width

**Minimum perimeter:** when obtaining a minimum perimeter of a rectangular area, form a square.

### **2-3 Composite Figures:**

# **Key Concepts**

**Composite Figures**: figures that are made up of two or more two-dimensional figures: triangles, squares, rectangles, semicircles, etc.

# 2-4 Surface Area & Volume:

# **Key Concepts**

Surface Area: the number of square units needed to cover the surface of a 3-D object.

**Lateral Faces:** the faces of a prism or pyramid that are <u>not</u> bases.

**Volume:** the amount of space that an object occupies, measured in cubic units.

**Prism:** a 3-D object with two parallel congruent polygonal bases.

Volume of Prism = AREA of the BASE x Height

**Pyramid:** a 3-D object with one polygonal base and all lateral surfaces meeting at an apex.

Volume of Pyramid = AREA of the BASE x Height

# 2-5 Angle & Triangle Theorems:

# **Key Concepts**

**Complementary Angles**: two angles on a right angle which sum to 90 degrees.

**Supplementary Angles:** two angles on a straight line which sum to 180 degrees.

**Opposite Angles:** two angles on the same intersection opposite to each other are equal.

Equilateral Triangle Theorem: all side lengths and all angles are equal.

**Isosceles Triangle Theorem:** two sides lengths and their opposite angles are equal.

Sum of Angle Triangle Theorem: all interior angles in a triangle add to 180 degrees.

**Remote Interior Angle Triangle Theorem:** the exterior angle at each vertex of a triangle is equal to the sum of the two interior angles opposite to it.

# 2-6 Parallel Line Theorems:

# **Key Concepts**

Corresponding Angles: pairs of corresponding angles associated with a transversal are equal.

Alternate Angles: pairs of alternate angles associated with a transversal are equal.

**Co-interior Angle:** pairs of co-interior angles associated with a transversal have a sum of 180 degrees.

# 2-7 Polygon Theorems:

# **Key Concepts**

**Polygon**: a closed figure that is a union of 3 or more line segments in a plane.

Sum of Interior Angles of a Polygon: the interior angles of any polygon is given by the expression: S = 180(n-2)

**Sum of Exterior Angles of a Polygon:** the exterior angles of any polygon is 360°.

# Strand 3:

# Analytical Geometry & Linear Relations

# 3-1 Linear vs. Non-linear

# **Key Concepts**

**Linear Equation:** an equation where the *x*-values increase at the same rate as the *y*-values in a graph: a straight line is used.

in a table of values: the first differences are constant. in an equation: the highest degree is one.

**Non-linear Equation:** an equation where the x-values increase at a different rate than the y-values.

in a graph: a curve is used.

in a table of values: the first differences are not constant.

in an equation: the highest degree is anything other than one or zero.

# 3-2 Forms of Representing Linear Equations:

# **Key Concepts**

**Slope-intercept form**: y = mx + b, where m represents the slope and b represents the y-intercept.

Standard Form: Ax + By + C = 0

**Slope:** is the measure of how steep a line is. The slope can be calculated from:

- a graph: by determining the rise and run  $m = \frac{rise}{run}$ 

- two points: using their coordinates  $m = \frac{y_2 - y_1}{x_2 - x_1}$ 

*y***-intercept**: the point where the line passes through the *y*-axis.

# 3-3 Methods of Graphing:

# **Key Concepts**

**Table of Values**: plot 5 points on the graph and connect them with a straight line.

**Slope & y-intercept:** plot the "b" value on the y-axis. Use the "m" value to determine the slope from that point, rise up if a positive slope or down if a negative slope and over to the right.

x & y-intercepts: calculate the x-intercept by subbing in y = 0 then calculate the y-intercept by subbing in x = 0. Plot these two intercepts and connect them with a straight line.

# 3-4 Generating an Equation:

# **Key Concepts**

**Given two points**: first calculate the slope, then find the y-intercept by subbing in one of the points.

**Given a word description:** determine whether the new slope is parallel or perpendicular to the existing slope.

**Given a graph:** calculate the slope using the rise and the run, then read the y-intercept from the graph.

# 3-5 Special Lines:

# **Key Concepts**

**Horizontal Lines:** lines that are parallel to the x-axis and have a slope of 0.

**Vertical Lines:** lines that are parallel to the y-axis and have an undefined slope.

Remember: H orizontal

0 slope

Y = b

V ertical

**U** ndefined slope

 $\mathbf{X} = \mathbf{a}$ 

## 3-6 Linear Systems:

# **Key Concepts**

**Linear System**: two or more linear equations considered at the same time.

**Solution:** the point where the two linear equations intersect.

#### 3-7 Scatter Plots & Lines of Best Fit:

# **Key Concepts**

**Scatter Plot:** a graphical method of showing the relationship between two variables.

**Partial variation:** the dependent variable is related to the independent variable; the y-intercept is not zero.

**Direct variation:** the dependent variable is directly related to the independent variable; the y-intercept is zero.

**Correlation:** a relationship between the dependent and independent variable. Can be classified as: **positive, negative, no correlation.** 

#### **Strength of Correlation:**

**Perfect correlation:** all points lie on the line of best fit **Strong correlation:** points are close to the line or best fit

**Moderate correlation**: points are spread out but there is a definite trend **Weak correlation**: points are more spread out and trend is less obvious

**Line of Best Fit:** a line that follows the trend of the data and has the same number of points above and below the line.

**Interpolation:** method of prediction that reads information within the given range of data.

**Extrapolation:** method of prediction that requires the line of best fit to be extended to read information outside of the given range of data.