1. Pythagorean Theorem

- 2. Perimeter & Area of Composite Figures
 - a) find area of given shape

b) find perimeter of triangle

$a^{2} + b^{2} = c^{2}$ $3^{2} + 4^{2} = c^{2}$	P = a + b + c P = 3 + 4 + 5
9 + 16 = c ²	P = 12 cm
25 = c ²	
√25 = c	
5 =c	
	1

- 3. Volumes of Prisms, Pyramids, Cylinders, Cones, & Spheres
 - a) volume of a cone

$$V = \frac{\pi r^2 h}{3}$$

$$V = \frac{3.14 \times 6.2^2 \times 9.4}{3}$$

$$V = \frac{1134.6}{3}$$

$$V = 378.2 \text{ m}^3$$

b) volume of a sphere

1. Maximizing the Area of a Rectangle

Rectangles with the same perimeter can have different areas. For example, all these rectangles have a perimeter of 18 cm.

_	l m)											
				2	m								
							1	Βn	1				
											4	m	
Ε			E										
ω			7 r			E				_			
						~				2			
										<i>a,</i>			

If all 4 sides of the rectangle are enclosed, then the maximum area occurs when the length and width are closest in value. If 3 sides of the rectangle are enclosed, then the maximum occurs when the length is twice the width.

A rectangle has a perimeter of 100 cm. Complete the given table by determining the length and area of each given width.

Width (cm)	Length (cm)	Area (cm²)
5	$\frac{100-2(5)}{2}$ = 45	5 x 45 = 225
10	$\frac{100-2(10)}{2}$ = 40	400
15	35	525
20	30	600
25	25	625

2. Minimizing the Perimeter of a Rectangle

Rectangles with the same area can have different perimeters. For example, all these rectangles have an area 60 $\rm m^2.$

If all 4 sides of the rectangle are enclosed, then the minimum perimeter occurs when the length and width are closest in value.

1. Types of Relationships

a) weak, positive, linear

linear Women's 100-m Track

negative

b) moderate strength

2. First Differences

linear relation

- \leftrightarrow graph is a straight line
- \leftrightarrow first differences are constant

Length(cm)	Perimeter(cm)	First Differences
4	14	
5	16	16 - 14 = 2
6	18	18 - 16 = 2
7	20	20 - 18 = 2

Non-linear relation

- \leftrightarrow graph is NOT a straight line
- \leftrightarrow first differences are NOT constant

Time (h)	Mass of caffeine (mg)	First Differences
0	300	
6	150	150 - 300 = -150
12	75	75 - 150 = -75
18	37.5	37.5 - 75 = -37.5
24	18.75	18.75 - 37.5 = -18.75
30	9.375	0.375 - 18.75 = - 18.375

c) strong positive non-linear

Muskox Population on Nunivak Island, Alaska

Perimeter of a Rectangle with Width 3 cm

Half-life of Caffeine in Human Body

MFM1P Summary Notes and Examples - Units 4 Linear Models

1. Direct Variations

A graph that represents direct variation is a straight line that passes through the origin.

Time t (h)	Cost C (\$)	First Differences			
0	0				
1	8	8 - 0 = 8			
2	16	16 - 8 = 8			
2	24	24 - 16 = 8			
3	24	32 - 24 = 8			
4	32	52 24 0			
Rate of change = $\frac{\text{rise}}{\text{run}} = \frac{\$16}{2\text{h}} = \$8/\text{h}$ The equation is: $C = 8t$					

2. Partial Variations

A graph that represents partial variation is a straight line that does not pass through the origin.

Time t (h)	Cost C (\$)	First Differences		
0	160	475 460 45		
1	175	1/5 - 160 = 15		
2	100	190 - 175 = 15		
2	190	205 - 190 = 15		
3	205	200 205 45		
4	220	220 - 205 = 15		
		I		

Rate of change = $\frac{rise}{run} = \frac{\$30}{2h} = \$15/h$

fixed cost variable cost The equation is: C = 160 + 15tinitial value is \$160 rate of change is \$15/h 1. Determine the angle measure indicated by each letter. Justify your answer.

1. <u>Ratios</u>

A ratio is a comparison of two quantities with the same units. Two ratios are equivalent when they can be reduced to the same ratio. For example, both 12:16 and 9:12 reduce to 3:4.

2. Proportions

A proportion is a statement with two ratios that are equal. For example, 2:3 = 10:15. To solve a proportion means to determine the value of an unknown term in a proportion.

a) Solve 2 : 10 = 5 : x	$\frac{2}{10} = \frac{5}{x}$
	cross multiply \rightarrow 2x = 50
	divide both sides by $2 \rightarrow x = 25$

3. <u>Rates</u>

A rate is a ratio of two terms with different units. A unit rate is a rate where the second term is 1 unit.

a) Express as 100 kilometres in 2 hours as a unit rate.

4. Percents

A percent is a ratio with second term 100. A ratio can be written as a fraction, decimal, or percent.

Ratio	Fraction	Decimal	Percent
25 : 100	<u>25</u> 100	0.25	25%

a) A winter jacket is regularly priced at \$79.99. It is on sale for 35% off. Determine the discount and the sale price.

$\frac{100}{35} = \frac{79.99}{x}$	
100x = 2799.65 x = 27.9965	Therefore, the discount is \$28.
79.99 - 28 = 51.99	Therefore, the sale price is \$51.99.

5. Scale Diagrams

A scale is the ratio of the diagram measurement to the actual measurement. scale = diagram measurement : actual measurement

a) Determine the scale used if the actual width of the design is 35 cm.

diagram : actual 7 cm : 35 cm = 1 : 5 (lowest term) Therefore, the scale is 1 : 5

100% -

35% + x

\$79.99

1. Polynomials

Like terms are represented by the same type of algebra tile (i.e. same variable raised to the same exponents) $3x^2$ and $-2x^2$ are like terms. -x and 2x are like terms. -3 and 2 are like terms.

The Distributive Property - Each term in the brackets is multiplied by the term outside the brackets.

a) $(3x^2 - 5x - 1) - (2x^2 - 7x + 4)$ = $3x^2 - 5x - 1 - 2x^2 + 7x - 4$ = $x^2 + 2x - 5$ b) $-5x(3x - 4) + 2(x^2 - 7x)$ = $-15x^2 + 20x + 2x^2 - 14x$ = $-13x^2 + 6x$

2. Solving Equations

To solve an equation means to determine the value of the variable that makes the equation true.

Solve for each unknown.

a)
$$2x + 10 = 4$$

 $2x + 10 - 10 = 4 - 10$
 $2x = -6$
 $\frac{2x}{2} = \frac{-6}{2}$
 $x = -3$
b) $3x + 3 = x + 7$
 $3x + 3 - x = x + 7 - x$
 $2x + 3 = 7$
 $2x + 3 - 3 = 7 - 3$
 $2x = 4$
 $\frac{2x}{2} = \frac{4}{2}$
 $x = 2$
d) $\frac{100^{\circ} / 2(x + 4)}{2(x + 4)}$

x + 2x + 90 + 90 = 360 3x + 180 = 360 3x + 180 - 180 = 360 - 180 3x = 180 $\frac{3x}{3} = \frac{180}{3}$ $x = 60^{\circ}$ 2(x + 4) + 100 = 180 2x + 8 + 100 = 180 2x + 108 = 180 2x + 108 - 108 = 180 - 108 2x = 72 x = 36°