7.1 Isotopes & Ions

Learning Goals/Success Criteria: At the end of this lesson, I will be able to:

- Define isotopes, ions, octet rule
- Describe applications of isotopes
- Draw Bohr Rutherford diagrams for the first twenty ions

Isotopes - Changing the Atomic Mass

nucleons

- Remember: There are 3 sub-atomic particles; protons neutrons and electrons

 Change the number of pt and you change the element. isotopes

 Change the number of e and you create an ion. same # of pt
 - What happens when you change the number of **neutrons**?
 - o Sometimes atoms either gain or lose neutrons because their nucleus is unstable.
 - o Since neutrons have 10 charge this does not affect the charge of the atom.
 - o Neutrons have about the same ______ as protons, so a change in the number of neutrons results in a change in the ______ as5 #
 - o Any time an atom has a different mass than is listed on the periodic table, we call it an

isotope . This means it has gained or lost _____ neutrons

Consider: Magnesium-24 and Magnesium-30

$$M_9$$
 $N_9 = 12$
 $V = 12$
 $V = 12$

$$p^{+} = 12$$
 $n^{\circ} = 18$
 $e^{-} = 12$

These two atoms of Mg have the same number of electrons and protons, but a different number of neutrons

Which one is the isotope? Magnesium-30

Why are Isotopes Useful? Make jot-notes as you are watching the videos on the applications of isotopes. Isotopes and Half-Life: What are medical Isotopes? & Strontium: It Knows Where You've Been

Ions - Charged Atoms

- The identity of an element is determined by the number of _______ in its nucleus.
- HOWEVER, If we change the number of electrons we do not change the element, instead, we have simply changed the overall change of the atom.
- Atoms can either gain or lose electrons.
- Any time an atom becomes charged, we call it an 101 . CATS ARE GOOD ARE AND (POSITIVE)
 - o If an atom gains electrons, it becomes a ______ charged ion. (anion)
 - o If an atom loses electrons, it becomes a positively charged ion. (cation) (a + ions

How Many Electrons Gained or Lost?

- Atoms can become stable with a full _____ shell of electrons. (last or outer orbit)
- Therefore, atoms will gain or lose the fewest number electrons possible to achieve a full valence
 - o Metals tend to 1050 electrons to become positive ions (cations).
 - o Non-metals tend to ______ electrons to become ______ ions (anions).
- Example: Magnesium (Mg) is a metal with ______valence electrons
 - To get a full outer shell it can either gain _____6___ electrons or lose _____2__ electrons.
 - Therefore, it is more likely to lose 2 electrons and form the positive ion.

Bohr Diagrams for Ions

- Bohr diagrams for ions have two modifications:
 - 1. place **square brackets** around the whole diagram
- 2. write the **charge** in the top right corner, outside the brackets

Practice: Draw Bohr-Rutherford diagrams for the following atoms and ions:

 $Practice: \ Use your periodic \ table to \ help complete \ the \ table's \ below:$

Element	Number of protons	Number of electrons	Net charge	Ion? (Y/N)	Symbol Ne A1 ³⁺ C1 ⁻ N ³⁻	
Neon	10	10	0	N		
Aluminum	13	10	3+	Υ		
chlorine	17	18	1 -	Y		
Nitrogen	7	10	3 -	Y		

Name of Element	Symbol	Atomic Number	Relative Atomic Mass	# p+	# nº	# e-	Net Charge	Ion? (Y/N)	Isotope? (Y/N)
Copper	62 ₂₉ Cu ⁺	29	62	29	33	28	1+	Y	Y
Oxygen	15 0	8	15	8	7	8	0	N	Υ
Calcium	41 Ca2+	20	41	20	21	18	2+	Y	Υ
Bromine	80 85 Br	35	80	35	45	36	1-	Υ	N

Practice: Try drawing the Bohr diagrams for the following ions.

