Steps:

- 1. Fill the "b" and "m" columns with the correct values from each equation.
- 2. From the values in the "Slope" column, find values for the *run* and *rise* of each line and thus complete the table below.
- 3. On the graph paper supplied, start by placing a point on the *y*-axis at the location specified by the *y*-intercept.
- 4. From this point, first draw the run. Remember that the run is always drawn *towards the right*.
- 5. From the end of the run, draw the rise upwards if it is positive and downwards if it is negative.
- 6. Draw the line from edge to edge on the graph through the two points you have just found.
- 7. Beneath each of the graphs, neatly print the equation of the line.

#	Relation	b (y-intercept)	m (slope)	RUN Always do first. Always "+"	RISE "+" \Rightarrow up "-" \Rightarrow down
1	$y = \frac{2}{3}x + 1$	1	2/3	3	٢
2	$y = \frac{3}{4}x$	0	에 도	Ч	3
3	$y = \frac{5}{2}x - 2$	-2	52	2	5
4	$y = -\frac{2}{5}x + 4$	4	215	5	- 2
5	$y = -\frac{1}{5}x$	0	- IN	5	-]
6	y = x - 3	- 3	L	1	I.
7	$y = \frac{x}{2} + 1$	T	-12	۲	I.
8	y = 2x + 3	3	2	1	Z
9	y = -4x	0	-4	١	- 4
10	y = -3x + 5	5	- 3	1	-3
11	y = -x	0	-1	1	- 1
12	<i>y</i> = 3	3	0	0	0

TO CHECK ANSWERS: If drawn correctly, your line will also pass through the point indicated below.

1. (3,3)	2. (4,3)	3. (-2,-7)	4. (-5,6)	5. (-5,1)	6. (3,0)
7. (6,4)	8. (-3,-3)	9. (-2,8)	10. (3,-4)	11. (-4,4)	12. (6,3)