Exam Review

Relations and Trends in Data

- 1. Predict the correlation for the following examples:
 - a) amount of gas left in the car versus the distance driven 1954:
 - b) push ups you can do versus the number of socks you own No collection
 - c) how long you study for an exam versus the mark on the exam

m make sure the lab

2. Using the following data, make a scatter plot on the graph paper provided. Make sure the label your axis, include a title and draw a line of best fit.

169

indepen dependent

Speed (km/h)	40	50	60	70	80	90	100	120	140	160
Stopping Distance (m)	12	14	21	35	41	51	62	84	122	159

Speed us. distance

a) Describe the correlation between speed and stopping distance.

strong non-linear

b) What are the independent and dependent variables?

c) Use the graph to determine the stopping distance for a speed of 85 km/h

44m + 2m

3. Complete the following table:

Volume of pop (mL)

	speed (km/h
Amount of sugar (g)	First Difference
20	3
30	30-20 = (0
40	49-30 = 16
50	50-40 = 10
	A

Is the volume of pop and amount of sugar a linear or non-linear relationship. Explain how you know.

Powers, Polynomials and Equations

Solve and answer in lowest terms.

a)
$$2\frac{1}{6} + 3\frac{3}{12}$$

v! $\frac{3}{12} + \frac{39}{12}$

x! $\frac{26}{12} + \frac{39}{12} = \frac{65}{12}$

Simplify the following on

b)
$$4\frac{1}{3} - 2\frac{5}{6}$$

$$\begin{array}{c}
3 & 6 \\
\times 1 & 3 & -6 \\
\times 1 & 3 & -17 \\
\times 1 & 3 & -6 \\
\hline
& \frac{26}{6} - \frac{17}{6} = \frac{9}{6} = \frac{3}{2}
\end{array}$$

c)
$$4\frac{1}{5} \times 2\frac{4}{15}$$

d)
$$\frac{4}{9} + \left(\frac{5}{6} \times -\frac{1}{3}\right)$$

BEDMAS

$$\frac{1}{18} - \frac{5}{18} = \frac{3}{18} = \frac{1}{18}$$

Simplify the following expressions using power laws and express as a positive power. Do not evaluate.

a)
$$(4^2)(4^6)(4^{-3})$$
 $4^{2+6+(-3)}$

c)
$$\frac{(8^6)(8^{-3})}{(8^4)}$$

= 8^{-1} = $\frac{1}{8}$

6. Simplify and evaluate (if possible). Show all steps.

a)
$$\left(\frac{2^4 \times 2^5}{2^7}\right)^2 = \left(2^{9-7}\right)^2 \left(\frac{1}{3}\right)^{-2} - \left[\frac{3^0}{3}\right]^{-2} = \left(2^{9-7}\right)^2 \left(\frac{1}{3}\right)^{-2} = \left(2^{9-7}\right)^{-2} = \left(2^{9-7}\right)^$$

$$\frac{1}{3} \left(\frac{1}{3}\right)^{-2} - \frac{3^{0}}{3^{0}} \quad 3^{0} = 1 \quad \text{c)} \quad (-2a^{3})^{4} \quad (-2)^{4} a^{3 \times 4} \quad (-2)^{4} a$$

Simplify the following

$$\left(\frac{3}{7}\right)^2 = 3^2 = 9 - 1 = 8$$

$$\frac{-3x^2-2x-6x-8+1}{-x^2-8x-7}$$

b) $2x^2y - 6xy^2 + 4x^2y - (3xy^2)$

c)
$$\frac{(3x^2 + 7x) - (x^2 - x)}{2x}$$

8. Expand and simplify if possible

a)
$$x^{2}(x+y) + 2y(x-3x^{2})$$

 $x^{3} + x^{2}y + 2xy - 6x^{2}y$
 $x^{3} + 2xy - 5x^{2}y$

6x2y - 3xy2

$$\frac{2x(3x-2)-(2x^2-3)+5x^2}{6x^2-4x-2x^2+3+5x^2}$$

$$\frac{9}{x^2}-\frac{4}{x}+\frac{3}{x^2}$$

Grade 9 Math Review

9. Factor the following polynomials completely.

a)
$$8abc - 12ab$$
, $4ab(2c - 3)$

b)
$$15\dot{a}^2b^5 - 12a^3b$$

 $3a^2b(5b^4 - 4a)$

c)
$$6x^2y^3z + 12xy^2z$$

 $6xy^2z(xy+2)$

10. Solve the following equations and show work.

a)
$$7x - 4x = x - 10$$

2

$$7_{\mathsf{X}} - 4_{\mathsf{X}} - {}_{\mathsf{X}} = -10$$

$$2x = -10$$

$$x = -10$$

11. Solve for x if the area is
$$14$$
.

b)
$$4(x-2) - (x+3) = x-1$$

$$4x-8-x-3=x-1$$

 $3x-11=x-1$
 $3x-x=-1+11$

$$3x - x = -1 + 11$$

$$x = \frac{10}{2}$$
 $x = 5$

c)
$$\frac{b+1}{3} = \frac{b-2}{2} + 1$$

$$6\left(\frac{b+1}{3}\right) = 6\left(\frac{b-2}{2}\right) + 6($$

$$2 = 3b - 2b$$

12. Use the formula to find the slope of a line that passes through the points

3x - 2

a) A (2, 7) and B (-2, -5)
$$= 5-7 = 12$$

$$m = \frac{4 - (-6)}{3 - 8} = \frac{10}{-5} = -2$$

- 13. Graph the line from the information provided below. Write the equation of each line
 - a) point A (-2, -1) and $m = \frac{1}{2}$

#+.shifts

14. A t-shirt company charges a flat fee of \$60.00 to set up the print machine plus \$20.00 per t-shirt.

a) Graph the relationship described above. Remember to label your axis with units and include a title.

b) Calculate the slope of this line and state the equation for the line (use 'C' for total cost and 'n' for number of t-shirts). Show all calculations.

$$C = M + b$$
 $C = M + b$
 $C = 20 + 60$
 $C = 20 + 60$

c) Explain what y-intercept represents in terms of the given problem?

- d) If the initial cost stayed the same and the cost per t-shirt increased by \$5.00 per t-shirt, compare the new graph with the original graph? Explain what would change or stay the same about the slope and the y-intercept and why.
 - · more steep
 - · 20n becomes 25n

Remember to practice telling a story from a graph. You have lots of examples in your notes.

distance time graphs

Equations of a Line

15. Given the following information graph the line a state the slope and y-intercept:

y-intercept = _

b) A (-1,-4) B (3,4)

c) y = 2x - 1

- 16. Using the equation for line A, graph line A. Using the information for line B, graph line B on the same axis. Determine the equation for line B:
- **a)** Line A: y = 3x 4
 - **Line B:** a line perpendicular to line A and passing through the point (3,-1)
 - Slope of line A: 3
 - Slope of line B:
 - Equation of line B: 43
- **b)** Line A: y = 2**Line B:** a line parallel to line A and passing through the point (-2,-2)
 - Slope of line A:
 - Slope of line B: _______
 - Equation of line B: y=-2

17. Graph the following equation by determining the x and y intercepts

$$4x - 2y + 12 = 0$$

x-intercept: Set y=0 4x-2(0)+12=0 (x,0) 4x+12=0

y-intercept: Set x=0 (0, y)

18. Graph the following equation by determining the slope and the y intercept

AX+84+C=0 -> y=mx+b

$$6x - 3y - 15 = 0$$

$$\frac{-75y}{-3} = \frac{-6x+15}{-3}$$

$$\frac{-3y-15=0}{-3y=-6x+15}$$

$$\frac{-3y=-6x+15}{-3y=-3}$$

$$\frac{-3y=-6x+15}{-3y=-3}$$

$$\frac{-3y=-6x+15}{-3y=-3}$$

$$\frac{-3y=-6x+15}{-3y=-3}$$
Slope = $\frac{2}{1}$ $\frac{-3}{1}$ y-intercept = -5

19. Write the equation of a line for the following descriptions. Show all calculations.

a) Write the equation for a line that is perpendicular to $y \neq 3x - 2$ and has the same y-intercept as 2x + 3y = 6. Give your final equation in slope and y-intercept form.

$$\sqrt{\text{set } x=0}$$

 $2(s)+3y=6$
 $3y=6$
 $y=\frac{6}{3}$ $y=2$

$$y = m \times tb$$

$$y = -\frac{1}{3} \times +2$$

b) Write the equation for a line that passes through the points (2,-4) and (3,1). Give your final b) write the equation for a line $\frac{1}{2}$ equation in standard form. $M = \frac{y_2}{x_2 - x_1} = \frac{1 - (-4)}{3 - 2} = \frac{5}{1}$ $M = \frac{5}{4} = \frac{1 - (-4)}{3 - 2} = \frac{1 - (-4)}{3 - 2} = \frac{5}{1}$ $M = \frac{5}{4} = \frac{1 - (-4)}{3 - 2} = \frac{1 - ($

$$M = \frac{y_2 y_1}{x_2 - x_1} = \frac{1 - (-4)}{3 - 2} = \frac{5}{1}$$

$$5x - 7 - 14 = 0$$
 $4x + 8x + 0 = 0$

(5,20.50) (9,28.50) ×, y, ×2 y-

- 20. A bowling alley has a fixed base cost and charges a variable per game rate. It costs \$20.50 for five games and \$28.50 for nine games. m = 28.50 - 20.50
 - a) What is the variable cost (cost per game)?
 - b) Write the equation of the line in the form C = mg + b where C is cost and g is number of games 20.50-10=6 C=29+0,
 - c) What is the initial cost to bowl? 20.50 = 2(5)+6 20.50 = 10 +6

21. Graph each equation of a line and determine the point of intersection from the graph. Then check - 4= -3x+3 algebraically. 7 y= 3x-3

Equation A: y = -x + 5

Equation B. 3x - y = 3

Point of intersection using your graph: (2,3)

$$x = 2$$
 $y = 3$

Check your answer:

Check equation A

$$3 = -2+5$$

$$3 = 3$$

Check equation B:

$$L.S. = R.S. =$$

$$3 = 3(2) - 3$$

$$3 = 3(2) - 3$$

 $3 = 6 - 3$ $LS = RS$

- 22. Josh is trying to determine which package he should use for his cell phone. Cell-u-lite offers 'Package A' that has no initial cost with a monthly fee that is \$30 per month. They also offer 'Package B' that has an initial cost of \$50 and a monthly fee of \$20 per month
 - a) Write an equation for each situation:

Package A: $\underline{\hspace{0.5cm}} = 30 \, \text{m}$

210

Package B: C = 50 + 20m menthus, cost

- b) Graph each relationship on the same set of axis. Make sure you label each line.
- c) What is the point of intersection? (5, 150)
- d) What does the point of intersection mean? Both companies at month #5 are going to charge the same amount (\$150) e) Which package would be better if Josh only plans

to use the phone for the 2 months of summer?

Explain. 30m=50+20m, 30 m-20 m=50

Grade 9 Math Review Page 8

Geometry

23. Calculate the unknown dimension or value for each of the following: Show all your calculations.

Surface Area = 2	$2b^2 + 4bh^{-3} = \frac{5A - 2b^2}{4b} = h$	$Volume = b^2h$	
Base (b)	Height (h)	Surface Area	Volume
1 m	$\frac{12-2(1)^2}{4(1)} = 2.5$	12 m^2	$(1)^2 \cdot 2.5 = 2.5$
1.2 m	$\frac{12-2(1.2)^2}{4(1.2)} = 1.9$	12 m^2	$(1.2)^2 \cdot 1.9 = 2.74$
1.4 m	12-2(14)2 = 1.44	12 m ²	$(1.4)^2 \cdot 1.44 = 2.82$
1.6 m	$\frac{12-2(1.6)^{2}}{4(1.6)} = 1.07$	12 m ²	$(1.6)^2 \cdot 1.07 = 2.74$

a) Dimensions of the toy box: 14 mx 1.4 m x 1.4 m y Cube

b) Maximum volume of the toy box: $\sqrt{2.74 \text{ m}^3}$

Grade 9 Math Review Page 9

25. Solve for x and y as required. Show your work and justify your answer.

