Errata Nelson Physics 12 Chapter 3

Section 3.1 - Review \#8 - pg. 113 (explanation for answer)

* you can ignore adding m_{z} since
it is hanging off a pulley and
is not physically in contact with the system

8. (a) Given: $m_{1}=1.8 \mathrm{~kg} ; m_{2}=1.2 \mathrm{~kg} ; m_{2}=1.2 \mathrm{~kg} ; F_{\mathrm{N}}=70.0 \mathrm{~N}$ Required: F_{a}

Analysis: Since mass 1 does not slide, the acceleration due to the horizontal force must balance the acceleration due to the tension, which equals $m_{2} g$. Use $F=m a$ to determine the acceleration.

$$
\begin{aligned}
\frac{F_{\mathrm{a}}}{m_{1}+m_{2}+m_{3}} & =\frac{F_{\mathrm{T}}}{m_{1}} \\
\frac{F_{\mathrm{a}}}{m_{1}+m_{2}+m_{3}} & =\frac{m_{2} g}{m_{1}} \\
F_{\mathrm{a}} & =\frac{m_{2} g}{m_{1}}\left(m_{1}+m_{2}+m_{3}\right)
\end{aligned}
$$

Solution: $F_{\mathrm{a}}=\frac{m_{2} g}{m_{1}}\left(m_{1}+m_{2}+m_{3}\right)$

$$
\begin{aligned}
& \frac{(1.2 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)}{(1.8 \mathrm{~kg})}(1.8 \mathrm{~kg}+1.2 \mathrm{~kg}+3.0 \mathrm{~kg}) \\
F_{\mathrm{a}}= & 39 \mathrm{~N}
\end{aligned}
$$

Section 3.3 - Review \#11 - pg. 119 (strange answer)

11. (a) Given: $a_{\mathrm{c}}=711 \mathrm{~m} / \mathrm{s}^{2} ; r=1.21 \mathrm{~m}$

Required: v
Analysis: $a_{\mathrm{c}}=\frac{v^{2}}{r} ; v=\sqrt{a_{\mathrm{c}} r}$
Solution: $v=\sqrt{a_{c} r}$

$$
\begin{aligned}
& =\sqrt{\left(711 \mathrm{~m} / \mathrm{s}^{2}\right)(1.21 \mathrm{~m})} \\
v & =29.3 \mathrm{~m} / \mathrm{s}
\end{aligned} \quad V_{i}=29.33 \mathrm{~m} / \mathrm{s}
$$

Statement: The speed of the hammer is $29.3 \mathrm{~m} / \mathrm{s}$.
(b) Given: $\Delta d=-2.0 \mathrm{~m} ; v_{\mathrm{i}}=29.3 \mathrm{~m} / \mathrm{s} ; \theta=42^{\circ}$

Required: Δd_{x}
Analysis: Use $v_{f}^{2}=v_{i}^{2}+2 a \Delta d$ to calculate the y-component of the final speed, then calculate the time of flight $v_{\mathrm{f}}=v_{\mathrm{i}}+a \Delta t$. Finally, calculate the range using $\Delta d=v \Delta t$.
Solution: Determine the y-component of the final speed:

$$
\begin{aligned}
v_{\mathrm{f}}^{2} & =v_{\mathrm{i}}^{2}+2 a \Delta d \\
v_{\mathrm{ffy}}^{2} & =v_{\mathrm{i} y}^{2}+2 g \Delta d \\
v_{\mathrm{ff} \mathrm{f}} & =\sqrt{v_{\mathrm{i} y}^{2}+2 g \Delta d} \\
& =\sqrt{\left((29.3 \mathrm{~m} / \mathrm{s})\left(\sin 42^{\circ}\right)\right)^{2}+2\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(-2.0 \mathrm{~m})}
\end{aligned}
$$

$$
\prod \prod \Delta d y=-2.0 \mathrm{~m}
$$

$$
=18.58 \mathrm{~m} / \mathrm{s} \text { (two extra digits carried) }
$$

$$
v_{\mathrm{fy}}=19 \mathrm{~m} / \mathrm{s} \longrightarrow V_{\mathrm{fy}}=18.60 \mathrm{~m} / \mathrm{s} \quad \text { using projectile motion equation }
$$

Determine the time of flight:
$v_{\mathrm{fy}}=v_{\mathrm{i} y}+a \Delta t$
$\Delta t=\frac{v_{\mathrm{fy}}-v_{\mathrm{i} y}}{a}$
$\Delta y=V_{i y} \Delta t+\frac{1}{2} a_{y} \Delta t^{2}$
$-2=(19.62) \Delta t+\frac{1}{2}(-9.8) \Delta t^{2}$
$=\frac{18.58 \frac{\mathrm{~m}}{\mathrm{~s}}-\left(-29.3 \frac{\mathrm{~m} \mathrm{f}}{\mathrm{s}}\right)\left(\sin 42^{\circ}\right)}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}$
$\Delta t=3.896 \mathrm{~s}$ (two extra digits carried)

$$
0=-4.9 \Delta t^{2}+19.62 \Delta t+2
$$

Determine the range of the ball:

$$
\begin{aligned}
\Delta d_{x} & =v_{x} \Delta t \\
& =v_{\mathrm{i}} \Delta t \cos \theta \\
& =\left(29.3 \frac{\mathrm{~m}}{\ngtr}\right)(3.896 \ngtr)\left(\cos 42^{\circ}\right) \\
\Delta d_{x} & =85 \mathrm{~m}
\end{aligned}
$$

$$
\Delta d_{x}=r_{i x} \cdot \Delta t
$$

$$
\Delta d_{x}=(29.33 \cos 42)(4,10)
$$

$$
\Delta d_{x}=89.36 \mathrm{~m}
$$

Statement: The range of the ball is 85 m .

$$
\longrightarrow \text { answer is strange, the record } \quad \text { distance is } 87 \mathrm{~m} \text {, calculating } \quad \begin{aligned}
& \text { one method breaks the record } \\
& \text { while the other method does not }
\end{aligned}
$$

Section 3.3 - Review \#1 - pg. 124 (correct steps)

Section 3.3 Questions, page 124

1. Given: $d=24 \mathrm{~m}$ or $r=12 \mathrm{~m} ; F_{\text {net }}=\frac{1}{3} F_{\mathrm{g}}$

Required: v

Analysis: $F_{\mathrm{c}}=\frac{m v^{2}}{r} ; F_{\mathrm{g}}=m g ; F_{\text {net }}=F_{\mathrm{c}}+F_{\mathrm{g}}$

$$
\begin{aligned}
F_{\text {net }} & =\frac{1}{3} F_{\mathrm{g}} \\
F_{\mathrm{c}}+F_{\mathrm{g}} & =\frac{1}{3} F_{\mathrm{g}}
\end{aligned}
$$

$$
F_{\mathrm{c}}=-\frac{2}{3} F_{\mathrm{g}}
$$

$$
\frac{m v^{2}}{r}=-\frac{2}{3} m g
$$

$$
v^{2}=-\frac{2}{3} \frac{m g r}{m}
$$

$$
v=\sqrt{-\frac{2}{3} g r}
$$

Solution: $v=\sqrt{-\frac{2}{3} g r}$

$$
\begin{aligned}
& =\sqrt{-\frac{2}{3}\left(-9.8 \mathrm{~m} / \mathrm{s}^{2}\right)(12 \mathrm{~m})} \\
v & =8.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Statement: The speed of the roller coaster is $8.9 \mathrm{~m} / \mathrm{s}$.

Section 3.3 - Review \#2 (b) - pg. 124 (incorrect answer)

(b) Given: $m=1000.0 \mathrm{~kg} ; r=40.0 \mathrm{~m} ; v=15 \mathrm{~m} / \mathrm{s}$ Required: F_{N}
Analysis: $F_{\mathrm{c}}=\frac{m \nu^{2}}{r} ; F_{\mathrm{g}}=m g$;
$F_{\mathrm{N}}=F_{\mathrm{g}}+F_{\mathrm{c}}$
$F_{\mathrm{N}}=m g+\frac{m v^{2}}{r}$

Solution: $F_{\mathrm{N}}=m g+\frac{m v^{2}}{r}$

$$
\begin{aligned}
& =(1000.0 \mathrm{~kg})\left(9.8 \mathrm{~m} / \mathrm{s}^{2}\right)+\frac{(1000.0 \mathrm{~kg})(15 \mathrm{~m} / \mathrm{s})^{2}}{(40.0 \mathrm{~m})} \\
F_{\mathrm{N}} & =1.5 \times 10^{4} \mathrm{~N}=15,000 \mathrm{~N}
\end{aligned}
$$

Statement: The magnitude of the normal force is $1.5 \times 10^{4} \mathrm{~N}$.
(c) Given: $m=1000.0 \mathrm{~kg} ; r=40.0 \mathrm{~m} ; v=15 \mathrm{~m} / \mathrm{s} ; F_{\text {net }}=0$

Required: v

$$
F_{\mathrm{net}}=F_{\mathrm{g}}+F_{\mathrm{c}}
$$

$$
0=m g+\frac{m v^{2}}{r}
$$

$$
0=g+\frac{v^{2}}{r}
$$

$$
v=\sqrt{-g r}
$$

$$
\begin{aligned}
F_{C} & =F_{g}-F N_{N}=0 \text { (weightless) } \\
F_{C} & =F g \\
\frac{m v^{2}}{r} & =M g \\
\frac{v^{2}}{r} & =g \\
V & =\sqrt{g \cdot r}
\end{aligned}
$$

Solution: $v=\sqrt{-g r}$

Statement: The speed required to make the driver feel weightless is $20 \mathrm{~m} / \mathrm{s}$.

Section 3.4 - Practice \#3 - pg. 129 (alternate solution shown below)

3. Given: $g=10.00 \mathrm{~m} / \mathrm{s}^{2} ; a_{\mathrm{net}}=9.70 \mathrm{~m} / \mathrm{s}^{2} ; r=6.2 \times 10^{6} \mathrm{~m}$

Required: T
Analysis: $a_{\mathrm{c}}=\frac{4 \pi^{2} r}{T^{2}}$; the centripetal acceleration is the difference between the acceleration due to gravity and the net acceleration experienced by a falling object.

$$
T=7.9 \mathrm{~h}
$$

Statement: The length of the day, or period of the planet, is 7.9 h .

$$
\begin{aligned}
& \text { acceleration of object at the eqvotor is the } \\
& \text { difference between the orceeleration due to gravity and the } \\
& \text { centrifugal acceleration } \\
& \begin{array}{l}
\text { equator plant: gravity } \\
a_{c}-a_{c} \rightarrow \text { centrifugal acceleration } \rightarrow a_{c}=4 \pi^{2} r
\end{array} \\
& 7^{2} \\
& 9.70=10,00-92 \\
& 9.70-10,00=-a_{2} \\
& -0.30=-a_{c} \\
& 0.30=a_{2} \\
& 0.30=\frac{4 \pi^{2} r}{7^{2}} \\
& 7^{2}=\frac{4 \pi^{2} r}{0.30} \\
& T=\sqrt{\frac{4 \pi^{2}\left(6.2 \times 10^{6}\right)}{0.30}} \\
& T=28,563.74 \mathrm{sec} \div 3600 \\
& T=7.93 \text { hours }
\end{aligned}
$$

$$
\begin{aligned}
& a_{\mathrm{c}}=\frac{4 \pi^{2} r}{T^{2}} \\
& \begin{aligned}
g-a_{\text {net }} & =\frac{4 \pi^{2} r}{T^{2}} \\
T & =\sqrt{\frac{4 \pi^{2} r}{g-a_{\text {net }}}}
\end{aligned} \\
& \begin{aligned}
g-a_{\text {net }} & =\frac{4 \pi^{2} r}{T^{2}} \\
T & =\sqrt{\frac{4 \pi^{2} r}{g-a_{\text {net }}}}
\end{aligned} \\
& \text { similar to question \#4 pg. } 130 \\
& \overbrace{F g} 𠃌_{\text {centrifugal }} F_{c} \\
& \text { Solution: } T=\sqrt{\frac{4 \pi^{2} r}{g-a_{\mathrm{net}}}} \\
& =\sqrt{\frac{4 \pi^{2}\left(6.2 \times 10^{6} \mathrm{~m}\right)}{\left(10.00 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}-9.70 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}\right)}} \\
& =2.856 \times 10^{4} \delta \times \frac{1 \text { min }}{60 \$} \times \frac{1 \mathrm{~h}}{60 \text { min }} \\
& \begin{aligned}
& F_{c}=F_{g}-F_{\text {centrifugal }} \\
& m a_{c}=n g g-F_{\text {centrifugal }} \\
& \frac{4 \pi^{2} r}{T^{2}}=g-F_{\text {centrifugal }} \underbrace{4 \pi^{2} r}=\left(g-a_{n c t}\right) T^{2} \\
& \sqrt{\frac{4 \pi^{2} r}{g-a_{n c t}}}=T \\
& \text { planets }^{r}=T \text { acceleration }=10.00 \mathrm{~m} / \mathrm{s}^{2}
\end{aligned}
\end{aligned}
$$

Section 3.4 - Review \#3 (d) - pg. 130 (full steps)
3.4 - Rotating Frames of Reference Pg. 126 \#3d
 * Earth's frame of Reference
x-component

$$
y \text {-component }
$$

$$
\begin{aligned}
& \sum F_{x}=F_{T x} \\
& F_{c}=F_{T} \sin \theta \\
& \frac{F_{c}}{\sin \theta}=F_{T}
\end{aligned}
$$

$$
\varepsilon F_{y}=F_{T y}-F_{y}
$$

$$
0=F_{T} \cos \theta-F_{g}
$$

$$
F_{g}=F_{T} \cos \theta
$$

$$
\frac{F_{g}}{\cos \theta}=F_{T}
$$

equate

$$
\begin{aligned}
& \frac{F_{c}}{\sin \theta}=\frac{F_{g}}{\cos \theta} \\
& \frac{F_{c}}{F_{g}}=\frac{\sin \theta}{\cos \theta} \\
& \frac{F_{c}}{F_{g}}=\tan \theta \\
& \theta=\tan ^{-1}\left(\frac{\frac{m v^{2}}{r}}{m g}\right) v=\frac{2 \pi r}{T} \\
& \theta=\tan ^{-1}\left(\frac{v^{2}}{r_{g}}\right)
\end{aligned}
$$

Chapter 3 - Review \#44-pg. 143 (some textbooks are missing the radius values)

String A radius $=4.00 \mathrm{~m}$

String B radius $=2.00 \mathrm{~m}$
44. Two masses are tied together by strings as shown in Figure 7 and swung around in a horizontal circle with a period of 2.00 s on a frictionless surface. Mass 1 is 3.00 kg , and mass 2 is 5.00 kg . Determine the tension in each string. (3.3) K/U TTI

Figure 7

