Day 1 - STEADY GONZALES

Graph below shows Gonzales' journey from his home to school over time.

a) How far does Gonzales live from school? 20 km
b) How long does it take Gonzales to reach school? \qquad
c) What is Gonzales's rate of change (speed / slope)? (Leave time as min)

$$
\begin{aligned}
& \text {) What is Gonzales's rate of change (speed /slope)? (Leave time as min) } \\
& 5 l o p e=\frac{\text { rise }}{\text { run }}=\frac{20 \mathrm{~km}}{40 \mathrm{~min}}=0.5 \mathrm{~km} / \mathrm{min} \text { if multiplied by } 60 \text {, it's } 30 \mathrm{~km} / \mathrm{h} \quad \text { speed }=\frac{\text { distance }}{\text { time }}
\end{aligned}
$$

d) Does Gonzales's speed change throughout his journey according to this graph? nope, it's strody/constont
e) What does that horizontal line signify in the graph? When he arrives ot school and staying there.
f) Graph this scenario from friend of Gonzales's perspective who is waiting at school to meet him.

Day 2 -SPEEDY GONZALES

Now we know that, Gonzales lives 20km away from school. Another day and he leaves home at 7:20 am; he has to be at school at 8:00 am.

a) How long his journey will take on day 2 ? \qquad
b) Calculate his rate of change (speed) for the first 20 minutes and describe this part of his journey.

$$
\text { Speed }=\frac{10}{20}=0.5 \mathrm{~km} / \mathrm{min} \text { speed of } 0.5 \mathrm{~km} / \mathrm{min} \text { or } 30 \mathrm{kn} / \mathrm{L}
$$

c) What do you think happened between 20 and 30 minutes of his journey? He stops for exactly $10 \mathrm{~min} \mathrm{~b} / \mathrm{c}$ he is still 10 km away from d) He checks his time and it reads $7: 50$ am. How many minutes does he school , have left to make to school on time? 10 m in
e) Draw a straight line after 30 minutes which indicates that he arrived school on time.
f) What do you notice about the steepness of the line between 30 and 40 minutes of his journey compared to that of 0 and 20 minutes?

$$
\text { speed }=\frac{10}{10}-1 \mathrm{~km} / 1_{\text {min }} 60 \mathrm{~km} / \mathrm{h}
$$

He's foster

$$
\text { by } 30 \mathrm{~km} / \mathrm{h}
$$

g) The steeper the line the faster_ Gonzales travels.

DAY 3 -GONZALES THE FORGETFUL
As usual Gonzales leaves home at 7:20 am and has to be at school at 8:00 am latest. Describe in detail Gonzales' journey to school on the third day.

$$
\operatorname{speed}(c)=\frac{10}{8} \times 60=75 \mathrm{~km} / \mathrm{h}
$$

$$
\delta_{/_{A}} \text { Slope }=\frac{-10}{10}=-1 \mathrm{~km} / \mathrm{min}
$$

$$
A \quad=-60 \mathrm{~km} / \mathrm{h}
$$

Slope ts "-" b/c from someone's perspective who is at school, this is a negative correlation. As time increax, the distana decreases.
 to
to

$$
\begin{aligned}
& \text { speed }(D)=0 \\
& \text { speed }(E)=\frac{-10}{6} \times 60=-100 \mathrm{~km} / \mathrm{h} \\
& \text { speed }(F)=\frac{-10}{10} \times 60=-60 \mathrm{~km} / \mathrm{h}
\end{aligned}
$$

(A) Gonzales heads towards school at a constant soeed of $60 \mathrm{~km} / \mathrm{h}$ for 10 min . As he was humming his favourite sing, he screams out loud:
"Oh shish kebab, did I pick up my math project?" His awesome papers enoble him to stop without slowing down. He checks his backpack for 2 minuter. (B) It is not there. He has to make a decision and heads back home (C) at a constant speed of $75 \mathrm{~km} / \mathrm{h}$ for 8 min . He spends 4 min tying to find his project. Ft soon as he finds it, he heads toward shod again at a constant speed of $100 \mathrm{~km} / \mathrm{h}$ for 6 minutes (E). He checks his time and realizes that he Noes not have to rush; therefore, he slows down to a constant speed of $60 \mathrm{~km} / \mathrm{h}$. He arrives school in $40 \mathrm{~min}(6)$ and stays there.

