DIRECT vs. PARTIAL VARIATION

Example 1:
Stephen works at a hardware store
and earns $\$ 9.25$ for each hour he
works. Let E represent his
Earnings, and h represent the
number of hours he works.

Example 1:
Stephen works at a hardware store and earns $\$ 9.25$ for each hour he works. Let E represent his Earnings, and h represent the number of hours he works.

Example 2:
Popcorn pops, on average, at a rate of 4 kernels per second. Let P represent the amount of popcorn kernels popped, and s represent the number of seconds.

Example 3:

Branley works in sales and earns commission of 2% on the merchandise she sells. Define your variables and write an equation.

These are the examples of \qquad . In example 1, E varies \qquad with the number of hours. The graph of a direct variation relationship is a straight line through the \qquad . The equation is in the form \qquad

Example 4:

Rio works at a local gym as a personal trainer. She earns $\$ 50$ each shift and an additional $\$ 35$ per hour of personal training. Let E represent her earnings, and h represent the number of p.t. hours.
Example 5:
Rhys' bank account has $\$ 500$. Each
month he spends $\$ 50$. Let B represent
his balance, and let m represent the
number of months that have passed.

Example 5:
Rhys' bank account has $\$ 500$. Each month he spends $\$ 50$. Let B represent his balance, and let m represent the number of months that have passed.

Example 6:

Jessee repairs computer problems and charges a $\$ 50$ service fee plus $\$ 30$ per hour. Let F represent her total fee, and h represent the number of hours worked.

These are the examples of \qquad . In example 5, B varies \qquad with the number of months. The graph of a partial variation relationship is a straight line that \qquad The equation is in the form \qquad

Situation	Equation	D or P
a) A cookie recipe makes 12 cookies for each egg in the recipe.		
b) An airplane was at an altitude of $\mathbf{1 7 0 0} \mathbf{m}$ and is descending at $\mathbf{5 0 m} \mathbf{~ p e r}$ minute.		
c) Danillo works as a tree planter for the government. He can plant 900 trees in a day.		
d) A cell phone plan is $\mathbf{\$ 2 0}$ per month but excludes text messaging. Each text message costs $\mathbf{2 0}$ cents.		
e) Meher cuts lawns in the summer and earns $\$ 15$ for every lawn she cuts.		
f) A banquet hall charges $\mathbf{\$ 5 0 0}$ for the hall rental and $\mathbf{\$ 3 2} \mathbf{5 0}$ per person.		

DIRECT VARIATION

Example 1

The new Mazda 3 Sport has gas mileage of 6 km per litre on highway. This can be modelled by the algebraic equation $\mathrm{d}=7.6 \mathrm{n}$, where d represents the distance you can travel and n represents the number of litres you use.

Complete the table of values for the distance per number of litres and use your table to create a graphical model of this scenario.

\mathbf{n}	$\mathbf{d}=\mathbf{6 n}$
0	
1	
2	
3	
4	
5	

Example 2

Dooko Mobile Company does not charge any monthly fees, but charges $\$ 0.25$ per minute of cell phone use. Model this scenario algebraically.

Create a table of values using your equation and create a graphical model.

PARTIAL VARIATION

Example 1

A taxi company charges a flat rate of $\$ 2.50$ plus $\$ 0.35 / \mathrm{km}$. The cost can be found using the equation \qquad , where C represents the cost and k represents the number of kilometres.

Using the equation, complete a table of values. Using your table of values, create the graph.

\mathbf{k}	\mathbf{C}
0	
20	
40	
60	
80	
100	

Example 2

KeeDe Mobile Company charges $\$ 20$ per month and an additional $\$ 0.25$ per minute of long distance calls. Model this scenario algebraically.

Create a table of values using your equation and create a graphical model.

