1. Graph the following lines on the same set of axes. Then state the equation of each line.
a) through the point $A(-6,1)$ with a slope of $\frac{1}{2}$ Answer: $y=\frac{1}{2} x+4$
b) through the point $B(3,1)$ with a slope of $3 \longrightarrow$ slope $=\frac{3}{1}$ Answer: $y=3 x-8$
c) through the point $C(-8,8)$ and parallel to the \rightarrow slope $=-3$ line $y=-\frac{3}{4} x+20 \quad$ Answer: $y=-\frac{3}{4} x+2 \quad-\frac{4}{4}$
d) through the point $D(6,2)$ and perpendicular to the line $y=-\frac{2}{3} x-91$

Answer: $y=\frac{3}{2} x-7$

2. Graph the following lines on the same set of axes. Then state the equation of each line.
a) through the points $A(5,2)$ and $B(1,-2)$

Answer: $y=\frac{4}{4} x-3 \rightarrow y=x-3$
b) through the points $C(-4,-3)$ and $D(2,-6)$

Answer: $y=\frac{-3}{6} x-5 \rightarrow y=-\frac{1}{2} x-5$
c) with a y-intercept of 2 and passing through the point $E(-1,-1) \quad$ Answer: $y=\frac{3}{1} x+2 \rightarrow y=3 x+2$
d) with an x-intercept of -6 and passing through the point $F(3,-3)$

Answer: $y=\frac{-3}{9} x-2 \rightarrow y=-\frac{1}{3} x-2$

3. Graph the following lines on the same set of axes. Then state the equation of each line.
a) a vertical line through the point $A(2,3)$

$$
\text { Answer: } \quad x=2
$$

b) a line through the points $B(-4,-1) ; C(6,-1)$

$$
\text { Answer: } \quad y=-1
$$

c) through the point $C(-3,8)$ and parallel to the line $y=5$ Answer:_y=8
d) through the point $D(6,2)$ and perpendicular to the line $x=0$

Answer: \qquad $y=2$ to be perpendicular $\left(90^{\circ}\right)$. the new line has to be horizontal or $y=2$ since it has to pass through
4) a) ${ }_{x}^{x_{1}} k(15,3)^{y_{1}} \quad m=-\frac{4}{3}$

$$
\text { 性盾 } /\left\{\begin{array}{l}
y=m\left(x-x_{1}\right)+y_{1} \\
y=\frac{-4}{3}(x-15)+3 \\
y=\frac{-4}{3} x+\frac{4}{3} \cdot \frac{15}{1}+3 \\
y=\frac{-4}{3} x+\frac{4 \cdot 15}{3}+3 \\
y=\frac{4}{3} x+20+3 \\
y=\frac{-4}{3} x+23
\end{array}\right.
$$

b) $P(-6,2) \quad m=-1 / 3$

1 c) $T(3,2) \quad y=2 x-7$

$$
y=m x+b
$$

Since the $2^{\text {nd }}$ line is 1 parallel, it hes the same

$$
2=\frac{-1}{3}(-b)+b
$$, slope $m=2$ $T(3,2)$

$$
2=\frac{6}{3}+b
$$

$$
y=m x+b
$$

$$
2=2(3)+b
$$

$$
2^{-2}=2+b-2
$$

$$
2^{-6}=6+b-6
$$

$$
0=b
$$

$$
-4=b
$$

$$
\therefore y=\frac{-1}{3} x
$$

(d) $S(-1,-5) \perp$ to $y=-2 x+3$

Since the $2^{\text {nd }}$ line is \perp (pergendiumar)
its slope is $\frac{1}{2}$

$$
\begin{aligned}
& m=\frac{1}{2} \quad s(-1,-5) \\
& y=m\left(x-x_{1}\right)^{\prime}+y_{1} \\
& y=\frac{1}{2}(x-(-1))-5 \\
& y=\frac{1}{2}(x+1)-5 \\
& y=\frac{1}{2} x+\frac{1}{2}:-5 \\
& y=0.5 x-4.5 \\
& y=\frac{1}{2} x-\frac{9}{2}
\end{aligned}
$$

(C) $P(1,1)$
$m_{1}=\frac{-4}{3}$, other slope is $m_{2}=\frac{3}{4}$

$$
\begin{aligned}
& y=m x+b \\
& 1=\frac{3}{4}(1)+b \\
& 1^{3 / 4}=\frac{3}{4}+b-\frac{3}{4} \\
& \frac{1}{4}=b
\end{aligned}
$$

$$
\therefore y=\frac{3}{4} x+\frac{1}{4}
$$

$\left\{\begin{array}{c}(9)=-\operatorname{int}(4,0) \\ m=-1 \\ y=m\left(x-x_{1}\right)+y_{1} \\ y=-1(x-4)+0 \\ y=-x+4\end{array}\right.$
5) a) $(2,-4) \quad(7,-19)$
step $x_{1} \quad y_{1} \quad x_{2} \quad y_{2}$

$$
\begin{aligned}
& m=\frac{-19-(-4)}{7-2}=\frac{-19+4}{5}=\frac{-15}{5}=-3 \\
& m=-3
\end{aligned}
$$

Using either port
find the equation

$$
\begin{aligned}
& m=-3 \quad(2,-4) \\
& y=m\left(x-x_{1}\right)+y_{1} \\
& y=-3(x-2)-4 \\
& y=-3 x+6-4 \\
& y=-3 x+2
\end{aligned}
$$

f) $y=3 x^{\prime}-(9) \rightarrow(0,-4)$ and $(9,0)$
$m=\frac{0-(-4)}{9-0}=\frac{4}{9} \quad m=\frac{4}{9}$
$y=m x+b \quad(0,-4)$

$$
-4=\frac{4}{9}(0)+b
$$

$$
-4=b
$$

$$
y=\frac{4}{9} x-4
$$

6) o.) $(-2,-5)$

Convert to $y=m x+b b / c$ you need to determine the slope.

$$
\begin{aligned}
2 x+y-5-2 x+5 & =0-2 x+5 \\
y & =-2 x+5
\end{aligned}
$$

Slope will be the some SINCE the lines ore parallel.

$$
\begin{aligned}
& m=-2 \quad(-2,-5) \\
& y=m\left(x-x_{1}\right)+y_{1} \\
& y=-2(x-(-2))-5 \\
& y=-2(x+2)-5 \\
& y=-2 x-4-5 \\
& y=-2 x-9
\end{aligned}
$$

(b) $3 x-y+1=0^{+y}$

Ic

$$
\begin{aligned}
& 3 x+1=y \\
& v \\
& y=3 x+1 \\
& m_{1}=\frac{11}{\left(m_{2}=-1 / 3\right.} \\
& (7,-1) \\
& y=m x+b \\
& -1=\frac{-1}{3}(7)+b \\
& -1+\frac{7}{3}=\frac{-7}{3}+b+\frac{7}{3} \\
& \frac{4}{3}=b \\
& \therefore y=\frac{-1}{3} x+\frac{4}{3}
\end{aligned}
$$

7) a) Well use the conation below to determine the x-nt.

$$
3 x-7 y+12=0
$$

To find the x-int sub " 0 " for " y "

$$
\begin{aligned}
3 x-7(0)+12 & =0 \\
3 x+12^{-12} & =0-12 \\
\frac{3 x}{3} & =\frac{-12}{3} \\
x & =-4 \quad(-4,0)
\end{aligned}
$$

Step 2: Finding the slope

$$
\begin{aligned}
& \text { 2: Finding the slope }=0-6 x+5 \\
& 6 x+8 y-5-6 x+5=0 \\
& \frac{8 y}{8}=\frac{-6 x}{8}+\frac{5}{8} \\
& y=\frac{-3}{4} x+\frac{5}{8} \\
& m_{1}=\frac{-3}{4} \text { II } m_{2}=\frac{-3}{4}
\end{aligned}
$$

Ste, $3 \quad m_{2}=-3 / 4 \quad(-4,0)$

$$
\begin{aligned}
& y=m\left(x-x_{1}\right)+y_{1} \\
& y=\frac{-3}{4}(x+4)+0 \\
& y=\frac{-3}{4} x-3
\end{aligned}
$$

8) a)

b)

\qquad
d)

9)

h)

