Mathematics 9 Determining Equations of Lines Algebraically

Date:

- 1. Graph the following lines on the same set of axes. Then state the equation of each line.
 - a) through the point A(-6,1) with a slope of $\frac{1}{2}$

Answer:_____

b) through the point B(3,1) with a slope of 3

Answer:_____

- c) through the point C(-8,8) and parallel to the line $y = -\frac{3}{4}x + 20$ Answer:
- d) through the point D(6,2) and perpendicular to the line $y = -\frac{2}{3}x - 91$ Answer:
- 2. Graph the following lines on the same set of axes. Then state the equation of each line.
 - a) through the points A(5,2) and B(1,-2)

Answer:_____

b) through the points C(-4,-3) and D(2,-6)

Answer:_____

- c) with a *y*-intercept of 2 and passing through the point E(-1,-1) Answer:
- d) with an *x*-intercept of -6 and passing through the point F(3,-3) Answer:_____
- 3. Graph the following lines on the same set of axes. Then state the equation of each line.
 - a) a vertical line through the point A(2,3)

Answer:_____

Answer:_____

b) a line through the points B(-4,-1); C(6,-1)

Answer:_____

c) through the point C(-3,8) and parallel

to the line y = 5 Answer:_____

d) through the point D(6,2) and perpendicular

to the line x = 0

Example:

Determine the equation of the line through the point (-6,5) and perpendicular to the line $y = \frac{4}{3}x - 7$.

Solution:

The equation of the new line is of the form $y = -\frac{3}{4}x + b$						
Since (-6,5) is <u>on</u> this line, it must <u>satisfy</u> its equation.						
$5 = -\frac{3}{4} \leftarrow 6 + b$						
$5 = \frac{18}{4} + b$						
$5 = \frac{9}{2} + b$	or 20 = 18 + 4 b					
$5 - \frac{9}{2} = b$	20 - 18 = 4b					
$\frac{10}{2} - \frac{9}{2} = b$	2 = 4b					
$\frac{1}{2} = b$	$\frac{2}{4} = b$					
$b = \frac{1}{2}$	$b = \frac{1}{2}$					
: the equation of the line is $y = -\frac{3}{4}x + \frac{1}{2}$						

Without using a graph, determine the equation of the line...

- 4. a) through the point (15,3) with a slope of $-\frac{4}{3}$
 - b) through the point (-6,2) with a slope of $-\frac{1}{3}$
 - c) through the point (3,2) and parallel to the line y = 2x 7
 - d) through the point (-1,-5) and perpendicular to the line y = -2x+3
 - e) through (1,1) and perpendicular to the line $y = -\frac{4}{3}x + 9$
 - f) through (2,-1) and parallel to the line $y = \frac{5}{3}x \frac{3}{5}$
 - g) parallel to the line y = -x 1 with an x-intercept of 4 (*Hint: An x-intercept is a point!*)
- 5. a) through the points (2,-4) and (7,-19)
 - b) through the points (-3,4) and (-7,-10)
 - c) with an x-intercept of -2 and passing through (2,7) (Hint: An x-intercept is a point!)
 - d) with a *y*-intercept of 5 and passing through (5,3)
 - e) with an *x*-intercept of 5 and a *y*-intercept of 3
 - f) with the same *y*-intercept as y = 3x 4 and with *x*-intercept 9.
- 6. a) through (-2,-5) and parallel to 2x + y 5 = 0
 - b) through (7,-1) and perpendicular to 3x y + 1 = 0
 - c) through (-3,4) and parallel to 5x+3y-2=0
 - d) through (4,-4) and parallel to 2x-8y-7=0

- e) x-intercept 9 and perpendicular to 3x-6y+4=0
- f) y-intercept ¹/₄ and perpendicular to 9x 4y + 3 = 0
- 7. a) with the same x-intercept as 3x-7y+12=0 and parallel to 6x+8y-5=0
 - b) with the same x-intercept as y = -2x+10 and perpendicular to 10x+4y+7=0
 - c) with the same *y*-intercept as 3x+5y+20=0 and through the point (-6,-1)
 - d) with the same y-intercept as x + y + 7 = 0 and the same x-intercept as 5x 6y 60 = 0
 - e) with the same *x*-intercept as x y 8 = 0 and through the point (7,-4)
 - f) with x-intercept -2 and intersecting the line x-3y+2=0 when x=-14
- 8. The questions below should not need any calculations. Just fill in the blanks with the equation of ...

8	a)	a horizontal line through (7,8)	
ł	5)	a line through the points $(5,-6)$ and $(5,8)$	
C	c)	a line through the points $(-1,-3)$ and $(-2,-3)$	
(d)	a line parallel to the <i>y</i> -axis and with <i>x</i> -intercept 7	
e	e)	a line parallel to the x-axis and through $(-4,5)$	
f	E)	a line perpendicular to $x = 7$ and through $(-2, -9)$	
Ę	g)	a line parallel to $x = -1$ and through (12,17)	
ł	1)	a line perpendicular to $y = 0$ and through the origin	
i)	a line perpendicular to $y = 2x + 3$ and through the origin	

Answers:

1.	a) $y = \frac{1}{2}x + 4$	b) $y = 3x - 8$	c) $y = -\frac{3}{4}x + 2$	d) $y = \frac{3}{2}x - 7$	
2.	a) $y = x - 3$	b) $y = -\frac{1}{2}x - 5$	c) $y = 3x + 2$	d) $y = -\frac{1}{3}x - 2$	
3.	a) $x = 2$	b) $y = -1$	c) $y = 8$	d) $y = 2$	4a) $y = -\frac{4}{3}x + 23$
4.	b) $y = -\frac{1}{3}x$	c) $y = 2x - 4$	d) $y = \frac{1}{2}x - \frac{9}{2}$	e) $y = \frac{3}{4}x + \frac{1}{4}$	f) $y = \frac{5}{3}x - \frac{13}{3}$ g) $y = -x + 4$
5.	a) $y = -3x + 2$	b) $y = \frac{7}{2}x + \frac{29}{2}$	c) $y = \frac{7}{4}x + \frac{7}{2}$	d) $y = -\frac{2}{5}x + 5$	e) $y = -\frac{3}{5}x + 3$ f) $y = \frac{4}{9}x - 4$
6.	a) $y = -2x - 9$	b) $y = -\frac{1}{3}x + \frac{4}{3}$	c) $y = -\frac{5}{3}x - 1$	d) $y = \frac{1}{4}x - 5$	e) $y = -2x + 18$ f) $y = -\frac{4}{9}x + \frac{1}{4}$
7.	a) $y = -\frac{3}{4}x - 3$	b) $y = \frac{2}{5}x - 2$	c) $y = -\frac{1}{2}x - 4$	d) $y = \frac{7}{12}x - 7$	e) $y = 4x - 32$ f) $y = \frac{1}{3}x + \frac{2}{3}$
8.	a) $y = 8$ b) x	=5 c) $y = -3$	d) $x = 7$ e) y	= 5 f) $y = -9$	g) $x = 12$ h) $x = 0$ i) $y = -\frac{1}{2}x$