You drive a delivery truck carrying gophers to clients across the city. Below is a d-t graph that illustrates one of your delivery runs.

Questions

0 . What was your position at: a) 20 s
b) 40 s
c) 80 s
d) 100 s

1. How many stops were made for deliveries?
2. How long was the longest stop?
3. What was the maximum displacement from the store?
4. What was the velocity of the truck in the first 10 seconds?
5. What direction was the truck traveling in at 90 s ?
6. What was the maximum speed of the truck at any time?
7. What was the total distance driven?
8. What was the total displacement driven?
9. What was the average speed of the entire trip?
10. What was the average velocity of the entire trip?

Marge dates an absolute zereo.

Answers: 0) 130 m [W], $260 \mathrm{~m}[\mathrm{~W}], 390 \mathrm{~m}[\mathrm{~W}], 0 \mathrm{~m}, ~ 1)$ 2, 2) $30 \mathrm{~s}, 3) 390 \mathrm{~m}[\mathrm{~W}], 4) 13 \mathrm{~m} / \mathrm{s}$ [W], 5) East, 6) $20 \mathrm{~m} / \mathrm{s}$ (going east), 7) $780 \mathrm{~m}, 8) 0 \mathrm{~m}, 9) 7.8 \mathrm{~m} / \mathrm{s}, 10) 0 \mathrm{~m} / \mathrm{s}$

The Speeder Bike Chase!

Luke is chasing Imperial Troopers on the forest moon of Endor riding on Speeder Bikes, as shown in the position-time graph below.

1. Do Luke and the Troopers start at the same point? How do you know? If not, which is ahead?
2. At $t=7 \mathrm{~s}$, who is ahead? How do you know?
3. Who is travelling faster at 3 s ? How do you know?

4. Are their velocities equal at any time? How do you know?
5. What is happening at the intersection of the two lines?

In the next dramatic scene, the motion is different:
6. How does Luke's motion in this graph compare to that in the first graph?
7. Who has the greater speed? How do you know?

8. Describe what is happening at the intersection of the lines.
9. Who has travelled further during the first 4 seconds? How do you know?

SPH3U: Position-Time Graphs and Velocity

On a position-time ($\vec{d}-t$) graph, the slope of the graph represents \qquad .

Graph A

Time (s)
The graphs are straight: \qquad velocity.

The slope of the graphs are positive: objects are traveling in the \qquad direction.

The steeper the slope of the graphs, the
\qquad the velocity.

The slope of the graph is negative: object is traveling \qquad the reference point.
The graph is straight: \qquad velocity.

Graph B

The graph is straight: \qquad velocity.

The slope of the graph is \qquad : the object is not moving.
The velocity of the object is \qquad .

The slope of the graphs are positive (objects are traveling in the \qquad direction), but the graphs are not straight: \qquad motion.
The slope of Runner A is decreasing: runner A is
\qquad —.
The slope of Runner B is increasing: runner B is
\qquad —.

SPH3U: Position and Velocity Graphs

Sketch a motion map and v-t graph corresponding to the following descriptions of the motion of an object.

1. The object is moving away from the origin at a constant (steady) speed.

2. The object moves towards the origin at a steady speed for 10 s , then stands still for 10 s .

3. The object is standing still

4. The object moves away from the origin at a steady speed for 10 s , then reverses direction and moves back toward the origin at the same speed.

1)
2)

\qquad
3)
\qquad
4)

Draw v-t graphs and a motion map for an object whose motion produced the d-t graphs shown below.

SPH3U: Representations of Motion and Name: Constant Velocity

x vs. t Graph	v vs.t Graph	Written Description	Motion Map

		Object moves with constant positive velocity for 4 seconds. Then, it stops for 2 seconds and returns to the initial position in 2 seconds.	

SPH3U: Velocity-Time Graphs and Displacement

On a position-time ($\vec{d}-t$) graph,

1. the slope of the graph represents \qquad .

On a velocity-time ($\vec{v}-t$) graph,
2. the slope of the graph represents \qquad .
3. the area under the graph represents \qquad .

1. What is the slope of the position-time graph for Runner A?
2. What is the slope of the position-time graph for Runner B?
3. What is the displacement (change in position) of Runner A after $4 s$?
4. What is the displacement of Runner B after $6 s$?
5. What is the area under the velocity-time curve for Runner A from 0 to 4 s ?
6. What is the area under the velocity-time curve for Runner B from 0 to $6 s$?
7. What is the slope of the velocity-time curve for Runner A?
8. What is the slope of the velocity-time curve for Runner B?

Sketching Velocity-Time Graphs:

Runner A runs at a constant velocity of $2 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$, while Runner B runs at a constant velocity of $2 \mathrm{~m} / \mathrm{s}$ [S] for 4 s ?

What is Runner A's displacement after 4 s ?

Starting from rest, Bicycle A accelerates smoothly to $5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ in 10 s . Starting from rest, Bicycle B accelerates smoothly to $5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ in 5 s , and then continues for another 5 s at constant velocity.
What is Bicycle A's displacement?

A runner runs at a constant velocity of $2 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$ for 2 s , and then instantaneously changes direction and runs 2 $\mathrm{m} / \mathrm{s}[\mathrm{S}]$ for another 2 s .

What is the runner's displacement after 4 s ?

A lab cart is pushed so that it coasts up an inclined plane, starting at $5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$, and then it rolls back down the plane.
What can you say about the area between the graph and the time axis when the lab cart rolls back down to its original position?

What is Bicycle B's displacement?

If they both have the same starting position, who is ahead after 10 s ?

SPH3U: Velocity Time Graphs

Questions
0 . What was the truck's velocity at $5 \mathrm{~s}, 15 \mathrm{~s}, 25 \mathrm{~s}, 30 \mathrm{~s}$?

1. What was the displacement of the truck in the interval 0 to 5 s?
2. What was the displacement of the truck in the interval 10 to 20 s ?
3. What was the displacement of the truck in the interval 25 to 30 s ?
4. What was the distance of the entire trip?
5. What was the average speed for the whole trip?
6. What was the displacement for the whole trip?
7. What was the average velocity for the whole trip?
8. In which interval was the acceleration the greatest?
9. During which time intervals is the truck

a) speeding up?
b) slowing down?
c) traveling South
d) traveling North

Answers: (0) $6 \mathrm{~m} / \mathrm{s}[\mathrm{S}], 24 \mathrm{~m} / \mathrm{s}[\mathrm{S}], 0,12 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$, (1) $30 \mathrm{~m}[\mathrm{~S}]$, (2) $210 \mathrm{~m}[\mathrm{~S}], 3.45 \mathrm{~m}[\mathrm{~N}], 4.390 \mathrm{~m}, 5.13$ $\mathrm{m} / \mathrm{s}, 6.300 \mathrm{~m}[\mathrm{~S}], 10.0 \mathrm{~m} / \mathrm{s}[\mathrm{S}], 8.20-27.5 \mathrm{~s}, 9 . \mathrm{a}) 5-10 \mathrm{~s}, 10-15 \mathrm{~s}, 25-27.5 \mathrm{~s}$, b) $20-25 \mathrm{~s}$, c) $0-25 \mathrm{~s}$, d) $25-30 \mathrm{~s}$

Draw tangents on the position-time graph for at least 4 time points, calculate the slopes of these tangents to find the instantaneous velocities, plot them on a velocity-time graph, and draw a best-fit straight line.

What is the slope of your velocity-time graph? What is the area under your velocity-time graph from 0 to 6 s? What is the acceleration? What do you notice about the displacement from 0 to 6 s ?

Finding Instantaneous and Average Velocity from Position-Time Graphs
Consider the following position-time graph for a scooter:

Over the course of the entire trip, the scooter's motion is non-uniform (not constant in velocity - the speed and/or direction change) because the graph is not straight.

Instantaneous Velocity: the velocity at a specific point in time, calculated by finding the slope of a tangent line to the curve (graph) at that point.
A tangent line is a straight line which "touches" the curve only at the point of interest, and does not intersect it.
Average Velocity: displacement divided by the time required to complete that displacement; ignores the actual path travelled; calculated by finding the slope of a secant line connecting the starting position and the end position. A secant line is a straight line which intersects two points on a curve.
$\vec{v}_{\text {ave }}=\frac{\Delta \vec{d}}{\Delta t}=\frac{\vec{d}_{2}-\vec{d}_{1}}{t_{2}-t_{1}}$, where Δd is the displacement (change in position), and Δt is the change in time

Worked Examples from the Graph:

A tangent line and secant line for $t=20 \mathrm{~s}$ have been drawn for you, and sample calculations for instantaneous and average velocity are shown. Find the instantaneous and average velocities for $\mathrm{t}=80 \mathrm{~s}$ and $\mathrm{t}=180$ s by drawing tangent and secant lines.

Timepoint (s)	Instantaneous Velocity	Average Velocity (from t=0 s)
$\mathrm{t}=20 \mathrm{~s}$	$\vec{v}_{\text {inst }}=\frac{195-50}{60-0}=2.4 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$	$\vec{v}_{\text {ave }}=\frac{100-0}{20-0}=5 \mathrm{~m} / \mathrm{s}[\mathrm{N}]$
$\mathrm{t}=80 \mathrm{~s}$		
$\mathrm{t}=180 \mathrm{~s}$		

