Storage Capacity of a Silo SOLUTIONS
A)

B) Volume of corn \rightarrow convert to m^{3}

$$
21,0007 / \times \frac{1000 \mathrm{~kg}}{d \mathrm{kr}}=21,000,000 \mathrm{~kg}
$$

holds $21,000 \mathrm{~T}$ of corn

$$
21,000,000 \mathrm{~kg} \times \frac{1 \mathrm{~m}^{3}}{700 \mathrm{~kg}}=30,000 \mathrm{~m}^{3}
$$

(\&D) skip
E)

$$
\begin{aligned}
S A & =C \text { cylinder lateral } \\
& =2 \pi r h+\frac{4 \pi r^{2}}{2} \epsilon \\
S A & =2 \pi r h+2 \pi r^{2} \\
S A & =2 \pi r(2 r)+2 \pi r^{2} \\
S A & =4 \pi r^{2}+2 \pi r^{2} \\
S A & =6 \pi r^{2} \\
S A & =6 \pi(15.3)^{2} \\
S A & =4,412.5 \mathrm{~m}^{2}
\end{aligned}
$$

$$
h=2 r
$$

F) Building cost

$$
\begin{gathered}
4,412.5 m^{20} \times \frac{\$ 8}{m^{2}} \\
\$ 35,299.94
\end{gathered}
$$

9.5 Maximizing the Volume of a Cylinder

The maximum volume fora cylinder, with a fixed surface area, occurs when its height equals its
diameter. $h=d$ or $(h=2 r)$ diameter. $h=d$ or $h=2 r$)
When volume is maximized the surface area can be found using the formula $S A=6 \pi^{2}$ and the height will be
twice the value of the radius r. twice the value of the radius r or $2 r$.
9.6 Minimizing the Surface Area of a Cylinder

The minimum surface area for a cylinder, with a fixed volume, occurs when its height equals its diameter, that is $h=d$ or $h=2 r$.

G) Paint cost
*round up, cant have $1 / 2$ a can

$$
4412.5 \mathrm{~m}^{2} \times \frac{1 \mathrm{can}^{2}}{40 \mathrm{~m}^{2}}=110.31 \text { cans }=111 \text { cans }
$$

$$
111 \operatorname{cgors}^{5} \times \frac{\$ 35}{\text { can }}=\$ 3885
$$

H) cost to fill the silo with corn

$$
21,000 \pi \times \frac{\$ 140}{\pi}=\$ 2,940,000
$$

I) Total cost

$$
\begin{aligned}
C_{\text {Total }}= & \begin{array}{l}
\text { Building } \\
\text { Cost }
\end{array} \underset{\text { cost }}{P_{\text {ain }}}+\begin{array}{c}
\text { cost to fill silo } \\
\text { with corn }
\end{array} \\
= & 35,299.94+3885+2,940,000 \\
= & \$ 2,979,184.94
\end{aligned}
$$

$$
\begin{aligned}
V_{\text {cylinder }} & =\pi r^{2 h} \\
& =\pi(15.3)^{2}(30.6) \\
& =22,503.7 \mathrm{~m}^{3} \\
V_{\text {Total }} & =22,503.7+7,501.2 \\
V_{\text {Total }} & =30,004.9 \mathrm{~m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
& V_{\text {sphere }}=\frac{4 \pi r^{3}}{3} \\
& V_{\text {hemisphere }}=\frac{\frac{4 \pi r^{3}}{3}}{2} \\
& \text { *divide by } 2
\end{aligned} \\
& \begin{aligned}
\text { Vhemisphere } & =\frac{2}{3} \pi r^{3} \\
& =\frac{\frac{2}{3} \pi(15.3)^{3}}{} \\
& =7.501 .2 \mathrm{~m}^{3}
\end{aligned} \\
&
\end{aligned}
$$

May, the volume matches from part B) II * this is a check, don't actually need it

Investigation
Mystery of the Pyramids

$$
\begin{aligned}
& s^{2}=20^{2}+s^{2} \\
& s^{2}=400+25 \\
& s^{2}=425 \\
& s=\sqrt{425} \\
& s=20.6 \mathrm{~cm}
\end{aligned}
$$

22. Jeremy is creating a piece of art for an exhibit. He starts with a squarebased right pyramid, as shown. He makes a cut parallel to the base through the midpoints of the lateral edges. Then, he removes the top of the pyramid.

$a^{2}+b^{2}=c^{2}$

$$
a^{2}+10^{2}=10.3^{2}
$$

$$
a^{2}=10.3^{2}-10^{2}
$$

$$
\begin{aligned}
& c a^{2}=6.09 \\
& a=\sqrt{6.09}
\end{aligned}
$$

a) Determine the volume of the original pyramid.

$$
a=2.467 \mathrm{~cm}
$$

b) Determine what volume of the pyramid was removed.
c) In terms of volume, what fraction of the original pyramid was $b=2.467 \times 2$ removed?
d) Investigate whether this fraction would be the same if the original pyramid had a rectangular base.
a) $V_{\text {pyramid }}=\frac{b^{2} h}{3}=\frac{(10)^{2}(20)}{3}=666.6 \overline{6} \mathrm{~cm}^{3}$
b) $\underset{\text { pyramid }}{\text { Removed }}=\frac{6^{2} h}{3}=\frac{(4.934)^{2}(10)}{3}=81.147 \mathrm{~cm}^{3}$
c) Ratio $\rightarrow \frac{\text { Vremoved pyramid }}{\text { V pyramid }}=\frac{81.147}{666.66}=0.12$

490 Chapter 8

