Chapter 8 Review

Chapter 8 Review

Question 1 Page 470

a)

$$
\begin{aligned}
c^{2} & =8.2^{2}+10.5^{2} \\
c^{2} & =67.24+110.25 \\
c^{2} & =177.49 \\
\sqrt{c^{2}} & =\sqrt{177.49} \\
c & \doteq 13.32
\end{aligned}
$$

$$
\begin{aligned}
P & =13.32+8.2+10.5 \\
& \doteq 32.0
\end{aligned}
$$

$$
A=\frac{1}{2} b h
$$

$$
=\frac{1}{2} \times 8.2 \times 10.5
$$

$$
\doteq 43.1
$$

Chapter 8 Review

Question 2 Page 470

$$
\begin{aligned}
6^{2} & =2^{2}+a^{2} \\
36 & =4+a^{2} \\
36-4 & =4+a^{2}-4 \\
32 & =a^{2} \\
\sqrt{32} & =\sqrt{a^{2}} \\
5.7 & =a
\end{aligned}
$$

The ladder reaches approximately 5.7 m up the wall.

Chapter 8 Review

Question 3 Page 470
a)

$$
\begin{aligned}
c^{2} & =3^{2}+4^{2} \\
c^{2} & =9+16 \\
c^{2} & =25 \\
c & =\sqrt{25} \\
c & =5
\end{aligned}
$$

$$
\begin{aligned}
P & =5+5+6+9+3 \\
& =28
\end{aligned}
$$

$$
\begin{aligned}
A & =A_{\text {trapezoid }}+A_{\text {rectangle }} \\
& =\frac{1}{2} \times 3 \times(5+9)+3 \times 9 \\
& =21+27 \\
& =48
\end{aligned}
$$

The perimeter is 28 m , and the area is $48 \mathrm{~m}^{2}$.
b)

$$
\begin{aligned}
s & =\frac{1}{2} \pi d \\
& =\frac{1}{2} \pi \times 8 \\
& \doteq 12.57 \\
P & =12.57+10+10 \\
& \doteq 32.6 \\
h^{2}+4^{2} & =10^{2} \\
h^{2}+16 & =100 \\
h^{2} & =100-16 \\
h^{2} & =84 \\
h & =\sqrt{84} \\
h & \doteq 9.17 \\
A & =A_{\text {triangle }}+A_{\text {semicircle }} \\
& =\frac{1}{2} \times 8 \times 9.17+\frac{1}{2} \pi \times 4^{2} \\
& \doteq 61.8
\end{aligned}
$$

The perimeter is about 32.6 cm , and the area is about $61.8 \mathrm{~cm}^{2}$.

Chapter 8 Review

a) $d=100+100+\pi \times 64$

$$
\doteq 401.1
$$

Tyler runs about 401.1 m .
b) $d=100+100+\pi \times 84$

$$
\doteq 463.9
$$

Chapter 8 Review

Question 5 Page 470
a) $S A=2 A_{\text {bottom }}+2 A_{\text {sides }}+2 A_{\text {front }}$

$$
\begin{aligned}
& =2(5 \times 4)+2(10 \times 4)+2(10 \times 5) \\
& =40+80+100 \\
& =220
\end{aligned}
$$

The surface area is $220 \mathrm{~cm}^{2}$.

b)

$$
\begin{aligned}
s^{2} & =115^{2}+147^{2} \\
s^{2} & =13225+21609 \\
s^{2} & =34834 \\
s & =\sqrt{34834} \\
s & \doteq 186.6
\end{aligned}
$$

$$
S A=A_{\text {base }}+4 A_{\text {triangle }}
$$

$$
=230 \times 230+4\left(\frac{1}{2} \times 230 \times 186.6\right)
$$

$$
=52900+85836
$$

$$
=138736
$$

The surface area is about $138736 \mathrm{~m}^{2}$.

Chapter 8 Review

Question 6 Page 471

$$
\text { a) } \begin{aligned}
V & =A_{\text {base }} \times h \\
& =\left(\frac{1}{2} \times 280 \times 150\right) \times 310 \\
& =6510000
\end{aligned}
$$

The volume of the tent is $6510000 \mathrm{~cm}^{3}$.

b)

$$
\begin{aligned}
c^{2} & =140^{2}+150^{2} \\
c^{2} & =19600+22500 \\
c^{2} & =42100 \\
c & =\sqrt{42100} \\
c & \doteq 205.2
\end{aligned}
$$

$$
\begin{aligned}
S A & =A_{\text {bottom }}+2 A_{\text {sides }}+2 A_{\text {front }} \\
& =280 \times 310+2 \times 205.2 \times 310+2\left(\frac{1}{2} \times 280 \times 150\right) \\
& =86800+127224+42000 \\
& =256024
\end{aligned}
$$

The amount of nylon required to make the tent is $256024 \mathrm{~cm}^{2}$.
c) Answers will vary. A sample answer is shown.

Assume that the side walls of the tent are flat.
d) Answers will vary. A sample answer is shown.

The answer is fairly reasonable. When erecting a tent, you want the side walls to be as flat and stretched as possible.

Chapter 8 Review

Question 7 Page 471
$500 \mathrm{~mL}=500 \mathrm{~cm}^{3}$

$$
\begin{aligned}
V & =\pi r^{2} h \\
500 & =\pi \times 4^{2} \times h \\
500 & =16 \pi h \\
\frac{500}{16 \pi} & =\frac{16 \pi h}{16 \pi} \\
\frac{500}{16 \pi} & =h \\
9.9 & \doteq h
\end{aligned}
$$

$$
\text { The height of the can is } 9.9 \mathrm{~cm} \text {. }
$$

Chapter 8 Review

$$
\begin{aligned}
13^{2} & =12^{2}+r^{2} \\
169 & =144+r^{2} \\
25 & =r^{2} \\
\sqrt{25} & =r \\
5 & =r
\end{aligned}
$$

Question 8 Page 471

$$
\begin{aligned}
S A & =\pi r s+\pi r^{2} \\
& =\pi \times 5 \times 13+\pi \times 5^{2} \\
& \doteq 283
\end{aligned}
$$

The surface area is approximately $283 \mathrm{~cm}^{2}$.

Chapter 8 Review

Question 9 Page 471

$$
\begin{aligned}
s^{2} & =10^{2}+35^{2} \\
s^{2} & =100+1225 \\
s^{2} & =1325 \\
s & =\sqrt{1325} \\
s & \doteq 36.4
\end{aligned}
$$

$$
\begin{aligned}
S A & =\pi r s+\pi r^{2} \\
& =\pi \times 10 \times 36.4+\pi \times 10^{2} \\
& \doteq 1458
\end{aligned}
$$

The surface area is about $1458 \mathrm{~cm}^{2}$.

Chapter 8 Review

$100 \mathrm{~mL}=100 \mathrm{~cm}^{3}$

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
100 & =\frac{1}{3} \pi r^{2}(10) \\
100 & =\frac{10 \pi}{3} r^{2} \\
\frac{3}{10 \pi} \times 100 & =\frac{3}{10 \pi} \times \frac{10}{3} \pi r^{2} \\
\frac{300}{10 \pi} & =r^{2} \\
\sqrt{\frac{300}{10 \pi}} & =r \\
3.1 & \doteq r
\end{aligned}
$$

The radius is approximately 3.1 cm .

Chapter 8 Review

Question 11 Page 471

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi \times 8^{2} \times 10 \\
& \doteq 670
\end{aligned}
$$

The volume of the cone is approximately $670 \mathrm{~cm}^{3}$. The volume of the cone is $\frac{1}{3}$ of the volume of the cylinder.

Chapter 8 Review

Question 12 Page 471

$$
\begin{aligned}
S A & =4 \pi r^{2} \\
& =4 \pi \times 10.9^{2} \\
& \doteq 1493.0
\end{aligned}
$$

The amount of leather required to cover the volleyball is approximately $1493.0 \mathrm{~cm}^{2}$.
a) $S A=\frac{1}{2}\left(4 \pi r^{2}\right)$

$$
\begin{aligned}
& =\frac{1}{2} \times 4 \pi \times 6400^{2} \\
& \doteq 257359270
\end{aligned}
$$

The area of the Northern Hemisphere is approximately $257359270 \mathrm{~km}^{2}$.
b) Answers will vary. A sample answer is shown.

Assume that the Earth is a sphere.
c) The fraction of the Northern Hemisphere that Canada covers is $\frac{9970610}{257359270}$, or about 0.04 . This is about $\frac{1}{25}$ of the Northern Hemisphere.

Chapter 8 Review Question 14 Page 471

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi \times 11.15^{3} \\
& \doteq 5806.5
\end{aligned}
$$

The volume of the soccer ball is approximately $5806.5 \mathrm{~cm}^{3}$.

Chapter 8 Review Question 15 Page 471

a) Answers will vary. A possible estimate is $5200 \mathrm{~cm}^{3}$.
b) $V_{\text {emptyspace }}=V_{\text {box }}-V_{\text {ball }}$

$$
\begin{aligned}
& =22.3^{3}-5806.5 \\
& =5283.07
\end{aligned}
$$

c) Answers will vary. The estimate in part a) was close to the correct answer.

Chapter 8 Chapter Test

Chapter 8 Chapter Test Question 1 Page 472

$$
\begin{aligned}
V & =\frac{4}{3} \pi r^{3} \\
& =\frac{4}{3} \pi \times 3^{3} \\
& =113
\end{aligned}
$$

The volume of the sphere is approximately $113 \mathrm{~cm}^{3}$. Answer C.

Chapter 8 Chapter Test Question 2 Page 472

$$
\begin{aligned}
A & =A_{\text {trapezoid }}-A_{\text {semiciricle }} \\
& =\frac{1}{2} \times 7 \times(10+5)-\frac{1}{2} \pi \times 2.5^{2} \\
& \doteq 43
\end{aligned}
$$

The area of the figure is approximately $43 \mathrm{~cm}^{2}$. Answer A.

Chapter 8 Chapter Test

Question 3 Page 472

$$
\begin{aligned}
V & =\pi r^{2} h \\
& =\pi \times 3.75^{2} \times 1.4 \\
& \doteq 61.850
\end{aligned}
$$

The volume of the water is approximately $61.850 \mathrm{~m}^{3}$, or 61850 L . Answer A.

Chapter 8 Chapter Test Question 4 Page 472

$$
\begin{aligned}
s^{2} & =15^{2}+15^{2} \\
s^{2} & =225+225 \\
s^{2} & =450 \\
s & =\sqrt{450} \\
s & \doteq 21.2
\end{aligned}
$$

Lateral Area $=\pi r s$

$$
\begin{aligned}
& =\pi \times 15 \times 21.2 \\
& \doteq 999
\end{aligned}
$$

The amount of plastic sheeting required is approximately $999 \mathrm{~m}^{2}$. Answer D.

Chapter 8 Chapter Test Question 5 Page 472

$$
\begin{aligned}
6.5^{2} & =4.2^{2}+b^{2} \\
42.25 & =17.64+b^{2} \\
24.61 & =b^{2} \\
\sqrt{24.61} & =b \\
5.0 & \doteq b
\end{aligned}
$$

The length of the unknown side is approximately 5.0 mm . Answer B.

Chapter 8 Chapter Test Question 6 Page 472

a) $V=\frac{1}{3} A_{\text {base }} \times h$

$$
\begin{aligned}
& =\frac{1}{3} \times 8^{2} \times 10 \\
& =213
\end{aligned}
$$

The amount of wax required is approximately $213 \mathrm{~cm}^{3}$.

b)

$$
\begin{aligned}
s^{2} & =4^{2}+10^{2} \\
s^{2} & =16+100 \\
s^{2} & =116 \\
s & =\sqrt{116} \\
s & \doteq 10.77 \\
S A & =A_{\text {base }}+4 A_{\text {triangle }} \\
& =8 \times 8+4\left(\frac{1}{2} \times 8 \times 10.77\right) \\
& =64+172.32 \\
& \doteq 236.3
\end{aligned}
$$

The area of plastic wrap needed is about $236.3 \mathrm{~cm}^{2}$, assuming no overlap.

Chapter 8 Chapter Test Question 7 Page 472

Answers will vary. A sample answer is shown.
Assume that the paper towels are stacked in three columns with two rolls in each column. Then, the dimensions of the carton would be 10 cm by 30 cm by 56 cm .

$$
\begin{aligned}
S A & =2 A_{\text {bottom }}+2 A_{\text {sides }}+2 A_{\text {front }} \\
& =2(10 \times 30)+2(56 \times 30)+2(10 \times 56) \\
& =600+3360+1120 \\
& =5080
\end{aligned}
$$

The area of cardboard needed is $5080 \mathrm{~cm}^{2}$.

Chapter 8 Chapter Test Question 8 Page 472

Doubling the radius of a sphere will increase the volume eight times. Doubling the radius of a cylinder will quadruple the volume.

Sphere:
Cylinder:

$$
\begin{array}{rlrl}
V & =\frac{4}{3} \pi r^{3} & V & =\pi r^{2} h \\
& =\frac{4}{3} \pi \times 1^{3} & & =\pi \times 1^{2} \times 1 \\
& =\frac{4}{3} \pi & & =\pi \\
V & =\frac{4}{3} \pi r^{3} & V & =\pi r^{2} h \\
& & =\pi \times 2^{2} \times 1 \\
& & =4 \pi
\end{array}
$$

Chapter 8 Chapter Test Question 9 Page 472

$$
\begin{aligned}
s^{2} & =8^{2}+10^{2} \\
s^{2} & =64+100 \\
s^{2} & =164 \\
s & =\sqrt{164} \\
s & \doteq 12.8
\end{aligned}
$$

$$
\begin{aligned}
S A & =\pi r s+\pi r^{2} \\
& =\pi \times 8 \times 12.8+\pi \times 8^{2} \\
& \doteq 523
\end{aligned}
$$

The surface area of the cone is about $523 \mathrm{~cm}^{2}$.

Chapter 8 Chapter Test Question 10 Page 472

$$
\begin{aligned}
V & =\frac{1}{3} \pi r^{2} h \\
& =\frac{1}{3} \pi \times 10^{2} \times 10 \\
& =1047
\end{aligned}
$$

The volume of the pile is approximately $1047 \mathrm{~m}^{3}$.

Chapter 8 Chapter Test Question 11 Page 473

a) $V=\pi r^{2} h$

$$
\begin{aligned}
& =\pi \times 4.2^{2} \times 25.2 \\
& \doteq 1396.5
\end{aligned}
$$

The volume of the can is approximately $1396.5 \mathrm{~cm}^{3}$.
b) $S A=2 \pi r^{2}+2 \pi r h$

$$
\begin{aligned}
& =2 \pi \times 4.2^{2}+2 \pi \times 4.2 \times 25.2 \\
& =776
\end{aligned}
$$

The amount of aluminum required to make the can is approximately $776 \mathrm{~cm}^{2}$.
c) $A=\pi r^{2}$

$$
\begin{aligned}
& =\pi \times 4.2^{2} \\
& =55
\end{aligned}
$$

The amount of plastic required for the lid is approximately $55 \mathrm{~cm}^{2}$.
d) Answers will vary. A sample answer is shown.

Assume that the circular lid covers the top of the cylindrical can with no side parts.

Chapter 8 Chapter Test

a) $V_{\text {emptyspace }}=V_{\text {can }}-V_{\text {balls }}$

$$
\begin{aligned}
& =1396.5-3\left(\frac{4}{3} \pi \times 4.2^{3}\right) \\
& =465.5
\end{aligned}
$$

The empty space in each can is approximately $465.5 \mathrm{~cm}^{3}$.
b)

c) $V_{\text {emptyspace }}=V_{\text {box }}-V_{\text {cans }}+V_{\text {empty space in cans }}$

$$
\begin{aligned}
& =25.2 \times 25.2 \times 33.6-12(1396.5)+12(465.5) \\
& \doteq 10165.3
\end{aligned}
$$

The total empty space is about $10165.3 \mathrm{~cm}^{3}$.
d) $S A=4(33.6 \times 25.2)+2(25.2 \times 25.2)$

$$
\doteq 4657
$$

The area of cardboard needed to make the box is about $4657 \mathrm{~cm}^{2}$.

