Density

Density is a physical property of matter. Density refers to how closely "packed" or "crowded" the materials are.

Many substances can be identified based on their density. Different substances have different densities as shown in Table 1.

Density is the amount of matter per unit volume of that matter. Density cannot be measured directly.

In order to determine density, you must measure mass ($\mathbf{g}, \mathbf{k g}$) and volume ($\mathbf{c m}^{\mathbf{3}} \mathbf{~ o r ~} \mathbf{m L}, \mathrm{L}$). The units for density are $\mathrm{g} / \mathrm{cm}^{3}$ or $\mathrm{kg} / \mathrm{m}^{3}$ for a solid or g / mL for a liquid

The equation for density is:

$$
\text { density }=\frac{\text { mass }}{\text { volume }} \quad \text { or } \quad \mathbf{d}=\frac{m}{v}
$$

It can be rearranged to solve for mass or volume:

$$
\begin{aligned}
\text { mass }= & \text { volume } \times \text { density } & \text { or } & \mathbf{m}=\mathbf{v} \mathbf{d} \\
& \text { volume }=\frac{\text { mass }}{\text { density }} & \text { or } & \mathbf{v}=\frac{\boldsymbol{m}}{\boldsymbol{d}}
\end{aligned}
$$

Example 1:

Calculate the density of a metal sample that has a volume of $798 \mathrm{~cm}^{3}$ with a mass of 14250 g . What is the identity of the metal?

$$
\begin{array}{ll}
\text { G: } & v=798 \mathrm{~cm}^{3} \\
& \mathrm{~m}=14250 \mathrm{~g}
\end{array}
$$

R: d
$\mathrm{A}: \quad \mathrm{d}=\frac{m}{v}$

S: $\quad \mathrm{d}=\frac{m}{v}$

$$
=14250 \mathrm{~g}
$$

$$
798 \mathrm{~cm}^{3}
$$

$$
=19.3089 \mathrm{~g} / \mathrm{cm}^{3}
$$

$$
=19.3 \mathrm{~g} / \mathrm{cm}^{3}
$$

S: The metal's density is $19.3 \mathrm{~g} / \mathrm{cm}^{3}$ and it is gold.

GRASS Example 2

Calculate the density of a piece of silver that has a volume of $2.0 \mathrm{~cm}^{3}$ and a mass of 21.0 g .
G: $V=2.0 \mathrm{~cm}^{3}$
$m=21.0 \mathrm{~g}$

R: $d=$?

A: $d=\frac{m}{V}$
S:

$$
d=\frac{21.0 \mathrm{~g}}{2.0 \mathrm{~cm}^{3}}
$$

s: $\quad d=10.5 \mathrm{~g} / \mathrm{cm}^{3}$

GRASS Example 3

What is the volume occupied by 40000 kg of water? (Hint: use Table 1)
G: $m=40000 \mathrm{~kg} \quad=40,000 \mathrm{~m} \times \frac{100 \mathrm{~g}}{\mathrm{Kg}}=40,000,000 \mathrm{~g}$

$$
d_{\text {water }}=1.00 \mathrm{~g} / \mathrm{tm}
$$

R: $\quad V=$?

A: $\quad v=\frac{m}{d}$
S: $V=\frac{40,000,000}{1.00 \mathrm{~g}}$
s: $\quad V=40,000,000 \mathrm{~cm}^{3}$

GRASS Example 4

An empty beaker with a mass of 53.5 g is filled with 65 mL of an unknown liquid. The mass of the beaker with the liquid is now 104.85 g . What is the density of the liquid? What is the liquid? (Hint: use different subscripts to differentiate between measurements of the same unit)

G:

$$
\begin{aligned}
& m_{i}=53.5 \mathrm{~g} \\
& v=65 \mathrm{mb} \\
& m_{\mathrm{f}}=104.5 \mathrm{~g}
\end{aligned}
$$

R:

$$
d=?
$$

A: $d=\frac{m}{v}$
S:

$$
\begin{aligned}
& d=\frac{M F M}{V} \\
& d=\frac{104.85-53.5}{65}=\frac{51.08}{65}+\quad-1=0.7858 \mathrm{~g} / \mathrm{mL}
\end{aligned}
$$

s: the tensity is 0,786 and the subythes is isopropant

GRASS Example 5

A graduated cylinder is filled with 20 mL of water. When 250 g of lead is added to the water, the volume rises to 42 mL . What is the density of lead? (Hint: use different subscripts to differentiate between measurements of the same unit)

G: $\quad V_{i}=20 m b$

$$
\begin{aligned}
& m=250 g \\
& v=42 m
\end{aligned}
$$

R: \quad, \quad ?
A: $d x$
S:

$$
d=250=250 \quad d=11.36 \mathrm{~g} / \mathrm{mb}
$$

s: at the trinity ot Dead is Plobylmb

1) Explain what determines whether a solid will float or sink in a liquid. Use the concept of density to explain why wood will float, but steel will sink.
2) For each of the following explain whether the solid will sink or float:
b. A piece of gold in mercury.
c. A piece of lead in mercury.
3) Many ships are made of steel. Why do steel ships float?
4) Using your knowledge of density, explain why it is easier for a person to swim in salt water than it is for them to swim in fresh water.
5) Calculate the mass of a gold bar that is 18.00 cm long, 9.21 cm wide, and 4.45 cm high.

Gas Test Problems:

1. During surgery, why do medical staff wear coverings over their shoes to eliminate sparks produced by static electricity?
2. In 1937, the Hindenburg blimp made its last trip. The Hindenburg was filled with hydrogen gas and caught fire. Based on what you observed in the flame test, what do you think happened to the Hindenburg blimp? Why?
3. Why are birthday balloons filled with helium and not hydrogen?
4. What gas does a fire extinguisher produce and why is this useful?

What is the reading in milliliters for each graduated cylinder?

18.5 ml

148 ml

81.5 ml

76 ml

4.9 ml

11 ml

8.4 ml
\qquad

Measuring Mass Practice

Read the following triple beam scales and determine the masses. Triple Beam Balances measure in grams.

1. \qquad g

100	200		300	400	500		
10	20	30	40	50	60	70	80

$\|$
3. \qquad g

	100		200		300		400	500
10	20	30	40	50	60	70	80	90

$\|$
$\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$
2. \qquad

	100	200		300	400	500		
10	20	30	40	50	60	70	80	90

$|||\mid$ $\begin{array}{llllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10\end{array}$

