DIVISION of POLYNOMIALS
Recap: When we divide monomials, we keep the base then subtract the exponents.

Ex1.Simplify:

$$
\begin{aligned}
\frac{25 x^{8}}{-5 x^{3}} & =-5 x^{8-3} \\
& =-5 x^{5}
\end{aligned}
$$

Ex. Simplify:

$$
\begin{aligned}
\frac{-32 x^{3} y^{4} z^{5}}{-64 x^{2} y z^{3}} & =\frac{1 x^{3-2} \cdot y^{4-1} \cdot z^{5-1}}{2} \\
& =\frac{x \cdot y^{3} \cdot z^{2}}{2}
\end{aligned}
$$

Lesson: When we divide a polynomial by a monomial, we divide each term by the monomial.

Simplify the following algebraic expressions:

$$
\begin{aligned}
& \text { i) }\left(-7 x^{3}+6 x^{2}\right) \div\left(-x^{2}\right) \\
& =\frac{\left(-7 x^{3}+6 x^{2}\right)}{\left(-x^{2}\right)} \\
& =\frac{\left(-7 x^{3}\right)}{\left(-x^{2}\right.}+\frac{6 x^{2}}{-x^{2}} \\
& =7 x^{3-2}+-6 x^{2-2}
\end{aligned}
$$

iii)
$\frac{5 a b+20 a c-20 a d}{5 a}=\frac{5 a b}{5 a}+\frac{20 a c}{5 a}-\frac{20 a d}{5 a}$

$$
=b+4 c-4 d
$$

$$
\text { ii) } \begin{aligned}
& \left.5 b^{2}-10 b-20\right) \div(-5) \\
= & \frac{5 b^{2}-10 b-20}{-5} \\
= & \frac{5 b^{2}}{-5}-\frac{10 b}{-5}-\frac{20}{-5} \\
= & -b^{2}-2 b--4 \\
= & -b^{2}+2 b+4
\end{aligned}
$$

iv)

$$
\frac{14 x^{2} y^{3} z-28 x^{3} y^{2} z^{2}+35 x y z}{7 x y z}
$$

$$
=\frac{14 x^{2} y^{3} z}{7 x y z}-\frac{28 x^{3} y^{2} z^{2}}{7 x y z}+\frac{35 x y z}{7 x y z}
$$

$$
=2 x y^{2}-4 x^{2} y z+5
$$

APPLICATIONS of POLYNOMIALS

1. In an isosceles triangle, two of the sides have length $x^{2}+3 x-8$. The perimeter of the triangle is $4 x^{2}+8 x+5$. Find a polynomial to represent the length of the third side.

$$
\begin{aligned}
2\left(x^{2}+3 x-8\right)+a & =\left(4 x^{2}+8 x+5\right) \\
a & =\left(4 x^{2}+8 x+5\right)-2\left(x^{2}+3 x-8\right) \\
a & =4 x^{2}+8 x+5-2 x^{2}-6 x+16 \\
a & =2 x^{2}+2 x+21
\end{aligned}
$$

2. For the shape on the right, find:
a) The polynomials to represent the missing sides. Label the diagram:
b) The perimeter of the whole shape

$$
\begin{aligned}
P & =3 x+(5 x+2)+(8 x+4)+2 x+(5 x+4)+(3 x+2) \\
& =26 x+12
\end{aligned}
$$

c) The area of the whole shape

$$
\begin{aligned}
\text { Total Area } & =A+B \\
& =3 x(5 x+2)+2 x(5 x+4) \\
& =15 x^{2}+6 x+10 x^{2}+8 x \\
& =25 x^{2}+14 x
\end{aligned}
$$

3. A rectangular back yard has a length of $3 x^{2}-2 x+4$ metres and a width of $4 x$ metres. The owner has put down stones to create a square sitting area measuring $3 x$ metres on all sides.
a) Calculate the area of the yard that is still grass (has not been covered by stones).

$$
\begin{aligned}
\text { Grass } & =\text { Total Area }- \text { Stone } \\
& =4 x\left(3 x^{2}-2 x+4\right)-(3 x)(3 x) \\
& =12 x^{3}-8 x^{2}+16 x-9 x^{2} \\
& =12 x^{3}-17 x^{2}+16 x
\end{aligned}
$$

b)

$$
\begin{aligned}
& 12(2)^{3}-17(2)^{2}+16(2) \\
= & 12 \cdot 8-17 \cdot 4+32 \\
= & 96-68+32 \\
= & 60 m^{2}
\end{aligned}
$$

