DIVISION of POLYNOMIALS

Recap: When we divide monomials, we keep the base then subtract the exponents.

Ex1.Simplify:	Ex2. Simplify:
$\frac{25 x^{8}}{-5 x^{3}}$	$\frac{-32 x^{3} y^{4} z^{5}}{-64 x^{2} y z^{3}}$

Lesson: When we divide a polynomial by a monomial, we divide each term by the monomial.

Ex1. Simplify:	Ex2. Simplify: $\frac{12 x^{2}-36 x}{3 x}$

Simplify the following algebraic expressions:

i) $\left(-\mathbf{7} \boldsymbol{x}^{3}+\mathbf{6} \boldsymbol{x}^{2}\right) \div\left(-\boldsymbol{x}^{2}\right)$	ii) $\left(\mathbf{5} \boldsymbol{b}^{2}-\mathbf{1 0 b} \mathbf{- 2 0}\right) \div(\mathbf{- 5})$
iii) $5 a b+20 a c-20 a d$ $5 a$	$\frac{14 x^{2} y^{3} z-28 x^{3} y^{2} z^{2}+35 x y z}{7 x y z}$

APPLICATIONS of POLYNOMIALS

1. In an isosceles triangle, two of the sides have length $x^{2}+3 x-8$. The perimeter of the triangle is $4 x^{2}+8 x+5$. Find a polynomial to represent the length of the third side.
2. For the shape on the right, find:
a) The polynomials to represent the missing sides. Label the diagram: $5 x+2$
b) The perimeter of the whole shape
c) The area of the whole shape

3. A rectangular backyard has a length of $3 x^{2}-2 x+4$ metres and a width of $4 x$ metres. The owner has put down stones to create a square sitting area measuring $3 x$ metres on all sides.
a) Calculate the area of the yard that is still grass (has not been covered by stones).
b) Calculate the grass area if $x=2$
