SNC2D \qquad
CHEMISTRY \qquad
\qquad
CHEMICAL REACTIONS
Balancing Chemical Equations
(P.178-182)

Skeleton Equations

A chemical equation that is complete except for coefficients is called an unbalanced equation or a skeleton equation. A skeleton equation is similar to a word equation except that the chemical names have been replaced with chemical formulas.

SKELETON EQUATION

* another name for a chemical equation
\qquad
\qquad
\qquad
\qquad

Skeleton Equations
For example, when methane (often called natural gas) burns in a gas fireplace, it reacts with oxygen in the air. The products of the chemical reaction are water and carbon dioxide. We can describe this reaction in a word equation as follows:
\qquad
word equation: methane + oxygen \rightarrow water + carbon dioxide
We can then write a skeleton equation by replacing each chemical name with its formula.
skeleton equation: $\mathrm{CH}_{4}+\mathrm{O}_{2} \rightarrow \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

Counting Atoms

However there is a problem. If we look at the reactants, the products and the numbers of atoms of each type there appears to be an imbalance. We have seemingly created one oxygen atom and destroyed two hydrogen atoms. But according to the law of conservation of mass this is impossible. so how do we solve this imbalance?
skeleton equation: $\quad \mathrm{CH}_{4}+\mathrm{O}_{2} \quad \rightarrow \quad \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}$

	\mathbf{R}	\mathbf{P}
C	1	1
H	4	2
O	1	3

Counting Atoms

Since we cannot change the types or formulas of the molecules - then they would not be the same chemical - we have to change the number of molecules of each. If we add an oxygen molecule to the reactants and a water molecule to the products, this balances the equation.
skeleton equation:

February 23, 2013 2DCHEM - Balancing Chemical Equations

Counting Atoms

PRACTICE

1. How many of each atom are there in the following compounds?

(a) $\mathrm{Na}_{2} \mathrm{CO}_{3}$	2 Na	1 C	3 O	
(b) $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$	3 Ca	2 P	8 O	
(c) $\mathrm{K}_{2} \mathrm{CrO}_{4}$	2 K	1 Cr	4 O	
(d) $3 \mathrm{BaCl}_{2}$	3 Ba	6 Cl		
(e) $4 \mathrm{Al}_{2}\left(\mathrm{CO}_{3}\right)_{3}$	8 Al	12 C	36 O	
(f) $\mathrm{Pb}^{\left(\mathrm{NO}_{3}\right)_{2}}$	1 Pb	2 N	6 O	
(g) $\mathrm{NH}_{4} \mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$	1 N	7 H	2 C	2 O
(h) $2\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$	4 N	16 H	4 Cr	14 O

Counting Atoms

PRACTICE

2. Why must the subscripts in chemical formulas not change when balancing an equation?
because if the subscripts change the chemical formula changes and we no longer have the same chemical \qquad
\qquad
\qquad
\qquad
\qquad

Balanced Equations

An equation in which the reactants and the products contain equal numbers of atoms of each type is a balanced chemical equation. The usual way to write a balanced equation is to use coefficients. A coefficient is a number written in front of a chemical symbol or formula. It indicates the number of atoms or molecules of that substance.

NOTE!

When no number is written, 1 is understood. However, in your balanced equations you are asked to write the number 1 .

February 23, $2013 \quad$ 2DCHEM - Balancing Chemical Equations 7

Balanced Equations

BALANCED EQUATION

balanced chemical (skeleton) equation

* \# reactant atoms = \# product atoms
* mass of reactants = mass of products

Balancing Chemical Equations

NOTEI
Balancing a chemical equation requires patience, perseverance, and practice. One set of steps or rules will not apply to all the equations you are asked to write. Here are some tips
\qquad
make sure you have the right formulas for all the compounds in the skeleton equation
balance atoms of elements in any complicated-looking formulas first, and balance atoms of pure elements last
never change a subscript in a formula to help make atoms balance balance by placing coefficients in front of formulas only
you may be able to treat polyatomic ions as a unit
use guess-and-check to balance simple equations

Check Your Learning

1. For each of the following write the correct skeleton equation, and then
\qquad balance it
(a) iron + oxygen \rightarrow iron (iii) oxide \qquad
(a) $4 \mathrm{Fe}+3 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
\qquad

Check Your Learning

1. For each of the following write the correct skeleton equation, and then balance it
(b) nitrogen + hydrogen \rightarrow ammonia
(b) $1 \mathrm{~N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$

Check Your Learning

. For each of the following write the correct skeleton equation, and then balance it.
(c) barium chloride + magnesium sulphate
\rightarrow barium sulphate + magnesium chloride
(c) $1 \mathrm{BaCl}_{2}+1 \mathrm{MgSO}_{4} \rightarrow 1 \mathrm{BaSO}_{4}+1 \mathrm{MgCl}_{2}$ \qquad
\qquad
\qquad
\qquad
\qquad

Check Your Learning

. Balance the following skeleton equations.
\qquad
(a) $4 \mathrm{Na}+1 \mathrm{O}_{2} \rightarrow 2 \mathrm{Na}_{2} \mathrm{O}$
(b) $2 \mathrm{~K}+1 \mathrm{Cl}_{2} \rightarrow 2 \mathrm{KCl}$ \qquad
(C) $2 \mathrm{Al}+3 \mathrm{Br}_{2} \rightarrow 2 \mathrm{AlBr}_{3}$
(d) $2 \mathrm{Li}+1 \mathrm{~S} \rightarrow 1 \mathrm{Li}_{2} \mathrm{~S}$
(e) $3 \mathrm{Mg}+1 \mathrm{~N}_{2} \rightarrow 1 \mathrm{Mg}_{3} \mathrm{~N}_{2}$
(f) $2 \mathrm{Na}+2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{NaOH}$
(g) $2 \mathrm{O}_{3} \rightarrow 3 \mathrm{O}_{2}$
(h) $\quad 2 \mathrm{Al}_{2} \mathrm{O}_{3} \rightarrow 4 \mathrm{Al}$
$+\quad 1 \mathrm{H}_{2}$
$1 \mathrm{P}_{4}+5 \mathrm{O}_{2} \rightarrow 1 \mathrm{P}_{4} \mathrm{O}_{10}$
(j) $4 \mathrm{FeS}+7 \mathrm{O}_{2} \rightarrow 2 \mathrm{Fe}_{2} \mathrm{O}_{3}$
$+4 \mathrm{SO}_{2}$ \qquad
\qquad

February 23, 2013 2DCHEM - Balancing Chemical Equations \qquad

Check Your Learning

техтвоок

P. 178 Q.1-3
P. 179 Q.1-3 \qquad
P. 180 Q.1-3 do not worry about showing "states"
P. 181 Q.1-3
P. 182 Q.1-3 do not worry about showing "states" \qquad

NOTE!

\qquad
Check your work often - see P. 552 of your text.
\qquad
\qquad

