Lesson: Rearranging Formulas Example 1 $A = L \times w$, solve for L

Example 2 P = 2L + 2w, solve for w

Example 3 C = $2\pi r$, solve for r Example 4 y = mx + b, solve for m

Example 5 A = s^2 , solve for s

Practice: Rearranging Formulas

Substitute, then solve for the unknown variable: a. y = mx + b; y = 10, m = 3, b = 4b. I = Prt; I = \$30, P = \$1000, t=0.5 years c. P = 2(l+w); P = 100m, l=30m d. S = $\frac{d}{t}$; S=120km/h, t=4h

Rearrange each formula for the indicated variable.

e. y = mx + b, solve for x f. I = Prt, solve for r g. S = $\frac{d}{t}$, solve for d

h. P = 2(l+w), solve for l i. $x^2 + y^2 = r^2$, solve for x j. A = P(1 + rt), solve for r

k. It is not safe for an adult to surpass her or his maximum heart rate. This maximum heart rate, M, in beats per minute (bpm), is modeled by the equation M=230 - 1.2A, where A is the age of the adult in years.

Rearrange to solve for A.

At what age should a person's maximum exercising heart rate be 194 bpm? 134 bpm?

I. The cost, C, in dollars, of producing a school yearbook is given by the formula C=S+4n, where S is the setup cost, and n is the number of yearbooks printed.

Solve the formula for n.

If the set-up cost is \$925, how many yearbooks can be printed? If C=\$1500?

ANSWERS: a) x=2, b) r=0.06 (6%), w=20m, d) d=480km, e) $x = \frac{y-b}{m}$, f) $r = \frac{I}{Pt}$, g) d=st, h) I = $\frac{p-2w}{2}$, i) x = r - y, j) $r = \frac{A-P}{Pt}$, k) $A = \frac{M-230}{-1.2}$:30yrs:80yrs, I) $n = \frac{C-S}{4}$:143 yearbooks