Lesson: Solving Equations - Multi-Step

Simplify, and then solve:

Some equations, you may have to start by first collecting like terms to simplify the equation.

Example 1

$3 x+10-6 x=8-4$
$-3 x+10=4 \leqslant$ simplify by collecting like terms
\leftarrow now, solve the two-step equation

Variable on both sides:

Other multi-step equations have the variable on both sides. These can be a little trickier. To solve, you must have all the variable terms on one side of the equation. When eliminating an entire term from an equation, we either (+) or (-) the term.

Example 3
$8 x+8=2 x-4$
$-2 x \quad-2 x \quad \leftarrow$ do the same to both sides and collect your like terms
$6 x+8=-4 \leftarrow$ now, solve the two-step equation

Example 2
$7 x+3-4 x+5 x=3-5+9$

Practice: Solving Equations - Multi-Step

a. $5+3 x+4 x=19$
b. $15 y-6-10 y=9$
c. $32-5=-4 a-5 a$
d. $5 m+3-9 m+13=0$
e. $6 w+8=4 w+18$
f. $-8 k-5=2 k+15$
g. $3 b-6=-b-2$
h. $5+4 d=-13-2 d$
i. $7 t+8=3 t-12$
j. $5 c-3-4 c=2 c+2$
k. $0=4 x+3-x-9$
I. $14-n-7=5 n+1$
m. Three angles are complementary (they add up to 90°). For the diagram to the right, this can be expressed by the equation: $3 x+x+x-20=90$. Find the value of the three angles.

ANSWERS: a. $x=2, \quad$ b. $y=3, \quad$ c. $a=-3$, j. $\mathrm{c}=-5, \quad$ k. $\mathrm{x}=2, \quad$ I. $\mathrm{n}=1, \quad$ m. $2^{\circ}, 22^{\circ}, 66^{\circ}$

Lesson: Solving Equations - with Brackets

Recap: eliminating brackets
Simplify the following expressions:
a. $(5 x+2)+(-x-9)$
b. $(2 y+4)-(5 y-12)$
c. $3(x-5)$

Before 'solving' an equation, we sometimes will have to simplify \rightarrow this may also include eliminating brackets.

Simplify by Adding/Subtracting Polynomials

Example 1
$(3 x+5)+(x-1)=-2$
Example 2
$(5 x-4)-(9-x)=-3$

Simplify using Distributive Law

Example 3
$2(x-4.5)+3 x=11$
Example 4
$3(x+5)=2(x-4)$

Simplify
Example 5
$5(x-8)=(2 x-2)+(4 x+5)$

Example 6
$(3 x+7)-4 x=2(9+4 x)$

Practice: Solving Equations - with Brackets

a. $5(x+4)=3 x+14$
b. $5 q-6=2(q+3)$
c. $4 t+3(2-t)=13$
d. $u=3(5-u)+1$
e. $3(r+4)+2(r+5)=32$
f. $5(y-3)-3(y-4)=12$
g. $4(v+3)=2(v+6)-8$
h. $2(y-4)=-3(y+2)+8$
i. $6(3 w+4)=10(2 w-1)$
j. $4(m+3)+2(m-3)=3(m-2)$
k. $p-(4 p+3)=-3(p+2)-(2 p+3)$
I. Polly solved the following equation. She is incorrect. Circle her two mistakes and explain why she is incorrect.

```
3(x+5)-(x+4)=3
3x+5-x+4=3
3x-x+5+4=3
2x+9=3
    +9 +9
2x=12
\div2 \div2
\(x=6\)
\[
\rho=-3
\]
ANSWERS: a) \(x=-3\), b) \(q=4\), c) \(t=7\), d) \(u=4\), e) \(r=2\), f) \(y=7.5, g\) ) \(v=-4\), h) \(y=2\), i) \(w=17\), j) \(m=-4, k) p=-\), l \(^{\text {l }} 2^{\text {nd }}\) line: just dropped
``` the brackets for both polynomials. Should have \(3 x+15-x-4\), AND \(5^{\text {th }}\) line +9 (should have subtracted 9 ).```

