SPH3U UNIVERSITY PHYSICS

REVIEW: MATH SKILLS

 Uncertainty in Measurements (P.650-652)

Uncertainty in Measurements

There are two types of quantities used in science: exact values and measurements. Exact values include defined quantities (1 m = 100 cm) and counted values (5 beakers or 10 trials). Measurements, however, are not exact because there is always some uncertainty or error associated with every measurement. As such, there is an international agreement about the correct way to record measurements.

August 22, 2012

3UR - Uncertainty in Measurements

Significant Digits

The certainty of any measurement is communicated by the number of significant digits in the measurement. In a measured or calculated value, **significant digits** are the digits that are known reliably, or for certain, and include the last digit that is estimated or uncertain. As such, there are a set of rules that can be used to determine whether or not a digit is significant (refer to P.650 of your text).

SIGNIFICANT DIGITS

- digits that are certain plus one estimated digit
- indicates the certainty of a measurement
- ♦ rules № P.650

August 22, 2012

3UR - Uncertainty in Measurements

2

Significant Digits								
WHEN DIGITS ARE SIGNIFICANT 🖌								
3. Any z are sig	Any zeros to the right of both the decimal point and a non-zero digit are significant.							
For ex	ample:	7.100	has four significant digits					
		7.10	has three significant digits					
August 22, 201	12	3UR - Uncertainty i	n Measurements	5				

August 22, 2012

Significant Digits

W	WHEN DIGITS ARE SIGNIFICANT 🖌							
4.	All digits (zero or	non-zero) used	in scientific notation are significant.					
	For example:	3.4 x 10 ³	has two significant digits					

3.400 x 10³ has four significant digits

6

August 22, 2012 3UR - Uncertainty in Measurements

Significant	Digits						
WHEN DIGITS ARE SIGNIFICANT ✓ 5. All counted and defined values have an infinite number of significant diaits.							
For example:	16 students π = 3.1415	has ∞ significant digits has ∞ significant digits					
August 22, 2012	3UR - Uncertainty i	n Measurements	7				

Significant	Digits						
WHEN DIGITS ARE NOT SIGNIFICANT ×							
1. If a decimal po leading zeros) ar	 If a decimal point is present, zeros to the left of other digits (i.e., leading zeros) are not significant – they are placeholders. 						
For example:	0.22	has two significant digits					
	0.000 22	has two significant digits					
August 22, 2012	3UR - Uncertaint	/ in Measurements	8				

3

WHEN DIGITS ARI 2. If a decimal poir digit (i.e., trailing	E NOT SIGNIFIC nt is not present, . g zeros) are not si	CANT X zeros to the right of the last non-ze ignificant – they are placeholders.	ero
For example:	98 000 000 25 000	has two significant digits has two significant digits	
NOTE! In most cases, the w two or three significa	values you will be ant digits.	working with in this course will h_{ℓ}	ave

Significant Digits	S							
PRACTICE								
 How many significant measured quantities? 	digits	are	there	in	each	of	the	following
(a) 353 g	3							
(b) 9.663 L	4							
(c) 76 600 000 g	3							
(d) 30.405 ml	5							
(e) 0.3 MW	1							
(f) 0.000 067 s	2							
(g) 10.00 m	4							
(h) 47.2 m	3							
(i) 2.7 x 10 ⁵ s	2							
(j) 3.400 x 10 ⁻² m	4							
August 22, 2012 3UR	- Uncerta	inty in	Measurem	ents				10

Significant Dig	gits	
PRACTICE		
Express the followin the correct number or	g measure f significant	d quantities in scientific notation with t digits.
(a) 865.7 cm	(4)	8.657 x 10 ² cm
(b) 35 000 s	(2)	3.5 x 10 ⁴ s
(c) 0.05 kg	(1)	5 x 10 ⁻² kg
(d) 40.070 nm	(5)	4.0070 x 10 ¹ nm
(e) 0.000 060 ns	(2)	6.0 x 10 ⁻⁵ ns
August 22, 2012	3UR - Uncertain	ty in Measurements 11

Precision

Measurements depend on the precision of the measuring instruments used, that is, the amount of information that the instruments can provide. For example, 2.861 cm is more precise than 2.86 cm because the three decimal places in 2.861 makes it precise to the nearest one-thousandth of a centimetre, while the two decimal places in 2.86 makes it precise only to the nearest one-hundredth of a centimetre. **Precision** is indicated by the number of decimal places in a measured or calculated value.

PRECISION

indicated by the number of decimal places in the number

August 22, 2012

3UR - Uncertainty in Measurements

12

13

Precision

RULES FOR PRECISION

1. All measured quantities are expressed as precisely as possible. All digits shown are significant with any error or uncertainty in the last digit.

For example, in the measurement 87.64 cm the uncertainty is with the digit 4.

3UR - Uncertainty in Measurements

August 22, 2012

 Precision

 FULES FOR PRECISION

 3. The precision of a measuring instrument depends on its degree of fineness and the size of the unit being used.

 For example, a ruler calibrated in millimetres (ruler #2) is more precise than a ruler calibrated in centimetres (ruler #1) because the ruler calibrated in millimetres has more graduations.

 #1
 0
 2
 3
 4
 5
 6

 #2
 0
 1
 3
 4
 5
 6

Precision RULES FOR PRECISION

4.

digit.

August 22, 2012

3UR - Uncertainty in Measurements

Precision		
 PRACTICE 4. An object is being r end of the object is up exactly with the the length of the obj 5.20 cm should be Since the ruler is ca nearest tenth of the 	neasured with a ruler calibrated in millimetres. Or at the zero mark of the ruler. The other end line 5.2 cm mark. What reading should be recorded f ect? Why? recorded since the object falls right on divisio librated in millimetres, we need to estimate to th smallest division	ne es or n.
August 22, 2012	3UR - Uncertainty in Measurements	19

Uncertainty in Measurements

PRACTICE

6. Copy and complete the following table.

	Mongurament	Procision	# of	Sig.Dig.	Measurement		
	Measurement	Precision	now	needed	rounded	in sci.not.	
	63.479 km (<i>example)</i>	3	5	3	63.5	6.35×10^{1}	
а	46 597.2 cm	1	6	2	47 000	4.7 x 10 ⁴	
b	0.5803 L	4	4	1	0.6	6 x 10 ⁻¹	
с	325 kg	0	3	2	320	3.2 x 10 ²	
d	0.067 80 mm	5	4	3	0.0678	6.78 x 10 ⁻²	
e	485.000 kW	3	6	4	485.0	4.850 x 10 ²	
August 22, 2012		3UR - Uncertainty in Measurements				21	

