SPH3U
 UNIVERSITY PHYSICS

\qquad
\qquad
\qquad
REVIEW: MATH SKILLS
International System of Units (SI) (P.660-661)
Sver hundreds of years, physicists (and other
scientists) have developed traditional ways (or
rules) of expressing their measurements. If we
can't trust the measurements, we can put no
faith in reports of scientific research. As such,
the International System of Units (SI) is used
for scientific work throughout the world -
everyone accepts and uses the same rules, and
understands that there are limitations to the
rules.
3UR - si
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
SI
SI RULES
In the SI system all physical quantities can
be expressed as some combination of
fundamental units, called base units. (i.e.,
$m \mathrm{l}, \mathrm{m}, \mathrm{kg},{ }^{\circ} \mathrm{C}, \mathrm{s}, \ldots$. For example:
$1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}$ unit for force
$1 \mathrm{~J}=1 \mathrm{~kg} \cdot \mathrm{~m}^{2} / \mathrm{s}^{2}$ unit for energy
September 8,2012

\qquad

SI

SI RULES
When converting units the method most commonly used is multiplying by conversion factors (equalities), which are memorized or referenced (e.g., $1 \mathrm{~m}=100 \mathrm{~cm}, 1 \mathrm{~h}=60$ $\min =3600 \mathrm{~s})$.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

SI RULES

- It is also important to pay close attention to the units, which are converted by multiplying by a conversion factor (e.g., 1 $\mathrm{m} / \mathrm{s}=3.6 \mathrm{~km} / \mathrm{h}$).

SI
USEFUL CONVERSIONS FACTORS!


```
G 1000 M 1000 k 1000 base 100 c 10 m 1000 \mu 1000 n
```



```
m/s
```


SI

PRACTICE

1. Use the chart to convert each of the following measurements to their base unit.
(a) 5.7 GW
(b) 72 cm
$5.7 \times 10^{9} \mathrm{~W}$ Power

10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10^{0}	-----	----
10^{-2}	centi	C
10^{-3}	milli	m
10^{-6}	micro	μ
10^{-9}	nano	$\mathrm{\eta}$

\qquad
\qquad
\qquad
(c) $6 \mu \mathrm{C} \quad 6 \times 10^{-6} \mathrm{C}$
(d) $0.50 \mathrm{MJ} \quad 0.50 \times 10^{6} \mathrm{~J}$
(e) $6.8 \mathrm{~mL} \quad 6.8 \times 10^{-3} \mathrm{~L}$
(f) $548 \mathrm{\eta m} \quad 548 \times 10^{-9} \mathrm{~m}$
(g) 0.75 kg
$0.75 \times 10^{3} \mathrm{~g}$
10^{-9} \qquad

NOTE!

This is only a partial list - refer to P. 661 for a complete list.
\qquad

PRACTICE
2. An athlete completed a $5-\mathrm{km}$ race in 19.5 min . Convert this time into hours.
$19.5 \min \mathrm{x} \frac{1 \text { hour }}{60 \mathrm{~min}}$
$=0.325$ hours

September 8, 2012
3UR - SI
. A train is travelling at $95 \mathrm{~km} / \mathrm{h}$. Convert $95 \mathrm{~km} / \mathrm{h}$ into metres per second (m / s).
$95 \mathrm{~km} / \mathrm{h} \times \frac{1000 \mathrm{~m}}{1 \mathrm{~km}} \times \frac{1 \text { hour }}{3600 \mathrm{~s}}$
$=26.4 \mathrm{~m} / \mathrm{s}$

September 8, 2012	3 3R-SI

\qquad 8

