A delivery truck took the following route that has been divided into individual lettered segments A to H. Assume that each segment is covered at uniform velocity and that the road lies along a straight portion of an east-west highway.

- (A) East for 1/2 hour at 60 km/h.
- (B) Stopped for 15 minutes making a delivery. (F) Stopped for a 1/2 hour coffee break.
- (E) West for 40 km at 80 km/h.
- (G) East for 1/2 hour at 60 km/h. (C) East for another 30 minutes at 90 km/h.
- (D) Stopped for 15 minutes making a delivery. (H) Back directly home in one hour.
- 1. Use the data to complete the table below. Note: displacement is the change in position for each segments while position is the delivery truck's position with respect to it's starting position (home).

	displacement (km [E])	velocity (km/h [E])	time (hours)	position (km [E] of home)
A				
В				
С				
D				
E				
F				
G				
Н				

- 2. Plot a position-time graph for the entire journey on the d-t graph given.
- 3. Plot a velocity-time graph for the entire trip on the v-t graph given.
- 4. What is the (i) average <u>speed</u> (v_{avg}) and (ii) average <u>velocity</u> (\vec{v}_{avg}) for the entire trip?

