SURFACE AREA AND VOLUME RELATIONSHIPS OF RECTANGULAR PRISMS <u>INVESTIGATION</u>

Minimum Surface Area

Problem 1: Teri has 64 cm³ of sand and she wants to make a box to hold it, using as little material as possible.

$$SA=2(lw+wh+lh)$$

Complete the table to determine which of the three options will use the least amount of surface area.

Length (m)	Width (m)	Height (m)	Surface Area (m ²)	Volume (m³)
1	4			64
2	4			64
4	4			64

The closer the box gets to being avolume.	, the smaller the surface area is for a given
How can you predict the minimum surface area is	if you know the volume?

Predict the dimensions of a rectangular prism that minimizes the surface area, and has a volume of 343 mm³.

Problem 2: Jenny has 24 m² of wood to make a toy box.

Complete the table to determine how to maximize the volume of the toy box.

Length (m)	Width (m)	Height (m)	Surface Area (m ²)	Volume (m ³)
1	4		24	
2	2		24	
2	3		24	

The closer the box gets to being a	, the larger the volume is for a given surface area.			
How can you predict the maximum volume if you are given the surface area?				

Predict the dimensions of a prism that maximizes the volume and has a surface area of 54 cm².

Questions

1. A magician has ordered a covered water tank for his next new act. He has enough money to pay for 150 m² of building material. What is the largest volume of water that can be held in his water tank?

2. Dunstin and Carmila's kids need a place to put all of their toys. Dunstin decides to build them a toy box, but he only has 54 cm² of wood to make the box. Will he be able to make a toy box and lid that will hold all the kids toys if they have a total volume of 32 cm³? (Do not worry about actual size of the toys, since smaller toys and fit amongst the larger ones).

3. State the dimensions that will minimize the surface area of a shadow box that has a volume of 35 937 cm³.

- 4. You have been asked to make a single shelf cabinet, with a volume of 4.5 m. However it can only be 0.5 m deep.
 - a) Determine the dimensions that will minimize the surface area.
 - b) Assuming that the front face of the shelf is open, what total surface area of wood is needed?