Using the points given below, determine the slope of the line passing through the points, and determine which pairs of lines are parallel and which pairs are perpendicular.

Notation: If $A B$ is parallel to $C D$, we write $A B \| C D$.
If $A B$ is perpendicular to $C D$, we write $A B \perp C D$.

Recall: Slope: $m_{A B}=\frac{y_{B}-y_{A}}{x_{B}-x_{A}} \quad$ OR $\quad m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$

From the table above, list any lines that are parallel or perpendicular. Use proper notation.

Parallel lines:

$$
\overleftrightarrow{G H}\|\stackrel{\leftrightarrow}{M N} ; \stackrel{\leftrightarrow}{\circlearrowleft}\| \stackrel{\rightharpoonup}{S T}
$$

Perpendicular lines:

Date:

State the equation of the line shown on the
Cartesian Plane given: $\quad y=\frac{3}{4} x-2$
a) Draw 3 lines that are parallel to the given line having y-intercepts of $-6,0$ and 4 .
b) Label each of the lines you have drawn with their respective equations.
2. State the equation of the line shown on the $y=m x+b$ Cartesian Plane given: $y=\frac{-3}{2} x+4 \longrightarrow$ perpendicular a) Draw 3 lines that are perpendicular to the given line having y-intercepts of $-5,0$ and 2 .
b) Label each of the lines you have drawn with their respective equations.
3. Beside each of the lines below, give its slope. Hint: " x-int" in the questions below is short for " x-intercept". Work for these questions may be done on scrap paper.
a) The line $y=-2 x-1$
-2
b) The line through $(2,4)$ and $(4,5) \frac{5-4}{4-2}=1 / 2$
c) The line with x-int 5 and y-int 3
$-3 / 5$
d) The line parallel to $y=7-\frac{3}{5} x$
$-3 / 5$
e) The line with rise of 5 and run of 2
f) The line $y=x+1$
g) The line through $(-3,1)$ and $(1,5) \frac{5-1}{1+3}=\frac{4}{4}=1$
h) The line $y=\frac{2}{3} x+5$

i) The line with rise of -2 and run $3 \quad-2 / 3$
k) The line through $(4,-4)$ and $(2,-7) \quad 3 / 2$
 $\frac{-7+4}{2-4}=-3 / 2$
In the space provided, list all pairs of lines from \#3 above which are either parallel or perpendicular.
Parallel lines: $\quad c\|d ; f\| g$
Perpendicular lines: $\quad i \perp k ; a \perp b$

Answers:

$-2 ; \frac{1}{2} ;-\frac{3}{5} ;-\frac{3}{5} ; \frac{5}{2} ; 1 ; 1 ; \frac{2}{3} ;-\frac{2}{3} ; \frac{4}{3} ; \frac{3}{2} ;-\frac{1}{2} \quad \mathrm{c}\|\mathrm{d} ; \mathrm{f}\| \mathrm{g} ; \mathrm{a} \perp \mathrm{b} ; \mathrm{i} \perp \mathrm{k}$

