Using the points given below, determine the slope of the line passing through the points, and determine which pairs of lines are parallel and which pairs are perpendicular.

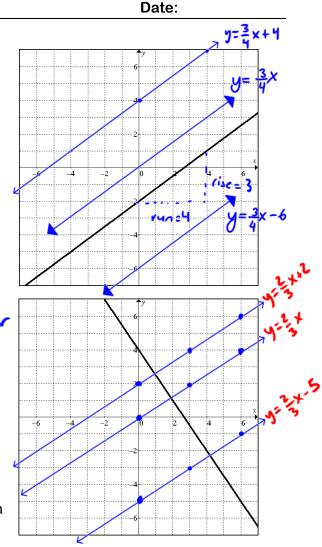
Notation: If AB is parallel to CD, we write AB || CD.

If AB is perpendicular to CD, we write $AB \perp CD$.

Recall: Slope: $m_{AB} = \frac{y_B - y_A}{x_B - x_A}$ OR $m = \frac{y_2 - y_1}{x_2 - x_1}$

(x_1, y_1)	(x_2, y_2)	Slope (Steps)	Slope
A (-4,7)	B (5,8)	$m_{AB} = \frac{8-7}{5-4} = \frac{1}{5+4}$	$\frac{1}{9}$
C (-4,4)	D (-1,5)	$m_{c0} = \frac{5-4}{-1-(-4)} = \frac{1}{-1+4} = \frac{1}{3}$	<u> </u> 3
E (1,10)	F (2,7)	$m_{ef} = \frac{7-10}{2-1} = \frac{-3}{1}$	-3
G (7,-4)	H (10,2)	$m_{6H} = \frac{2 - (-4)}{(0 - 7)} = \frac{2 + 4}{3} = \frac{6}{3} = 2$	2
I (6,12)	J (9,9)	$m_{13} = \frac{q_{-12}}{q_{-6}} = \frac{-3}{3} = -1$	-1
K (2,1)	L (6,2)	$M_{LL} = \frac{2-1}{6-2} = \frac{1}{4}$	1/4
M (-3,-3)	N (-2,-1)	$M_{NN} = \frac{-1 - (-3)}{-2 - (-3)} = \frac{-1 + 3}{-2 + 3} = \frac{2}{1}$	2
O (-1,-4)	P (4,-6)	$M_{OP} = \frac{-6 - (-4)}{4 - (-1)} = \frac{-6 + 4}{4 + 1} = \frac{-2}{5}$	-2/5-
Q (-8,6)	R (-4,10)	$M_{QQ} = \frac{10-6}{-4-6} = \frac{4}{-4+8} = \frac{4}{4}$	1
S (-5,2)	T (0,0)	$m_{ST} = \frac{O-2}{O-(-5)} = \frac{-2}{0+5} = \frac{-2}{5}$	-2/5

From the table above, list any lines that are parallel or perpendicular. Use proper notation.


Parallel lines:

Perpendicular lines: $(D \ I \ EF \)$ $IJ \ L \ QR$

GHIIMN ; OP II ST

- 1. State the equation of the line shown on the Cartesian Plane given: $9 = \frac{3}{4} \times -2$
 - a) Draw 3 lines that are parallel to the given line having y-intercepts of -6, 0 and 4.
 - b) Label each of the lines you have drawn with their respective equations.
- 2. State the equation of the line shown on the $\partial = m \times + b$ Cartesian Plane given: 💾 +4
 - a) Draw 3 lines that are perpendicular to the given line having y-intercepts of -5, 0 and 2.
 - b) Label each of the lines you have drawn with their respective equations.
- 3. Beside each of the lines below, give its slope. Hint: "x-int" in the questions below is short for "r-intercept" Work for these

	-	questions may be done on scrap paper.						
	a) Th	e line $y = -2x - 1$	-2	b)	The line through $(2,4)$ and $(4,5)$	-= 1/2		
=	c) Th	e line with <i>x</i> -int 5 and <i>y</i> -int 3	-3/5	d)	The line parallel to $y = 7 - \frac{3}{5}x$	-315		
	e) Th	e line with rise of 5 and run of 2	5/2	f)	The line $y = x+1$	_1		
	g) Th	e line through $(-3,1)$ and $(1,5)_{1+3}^{5-1}$			3	2/3		
	i) Th	e line with rise of -2 and run 3	-2/3	j)	The line \perp to $y = -\frac{3}{4}x - 1$ Departure	9=4/3		
	k) Th	e line through (4,-4) and (2,-7) $-\frac{3}{2}+\frac{4}{2}=-\frac{3}{2}$	3/2	l)	The line with x-int -2 and y-int -1	-1/2 -		
	In the space provided, list all pairs of lines from #3 above which are either parallel or perpendicular.							
	Paralle	el lines: c d; f	9	Per	rpendicular lines: <u>i Lk</u> ; a	طــل		
Answers:								
	$-2;\frac{1}{2}$	$\frac{1}{2}; -\frac{3}{5}; -\frac{3}{5}; \frac{5}{2}; 1; 1; \frac{2}{3}; -\frac{2}{3}; \frac{4}{3};$	$\frac{3}{2}$; $-\frac{1}{2}$		c d ; f g ; a \perp b ; i \perp k			

