\qquad

1. Use the vocabulary terms that follow to label the parts of an atom. Place the correct term on the line next to each part of the atom. You will not need to use all the terms.
nucleus proton neutron electron energy level (orbit) ale enron (\rightarrow)

- orbitals
c) protons (t)
- neutrons
nucleus
atomic mass
unit

2. Complete the following table describing the three subatomic particles.

	Symbol	Overall Charge	Atomic Weigh/./(u)	Location in Atom
Proton	ρ^{+}	+1	1 a.m.v	nvelevs
Neutron	n^{0}	0	1 a.m.v	nucleus
Electron	e^{-}	-1	$\frac{1}{1240}$ a.m.v	out side of

3. Label the information provided in the periodic table. the nucleus

4. What does the atomic number represent?

$$
\begin{aligned}
& \text { \#of protons or \# of electrons } \\
& \text { or }
\end{aligned}
$$

6. What does the atomic mass represent? \# of protons. \# of neutrons
atomic mass $=$ \#protonst \# neutrons
7. How would you figure the number of protons or electrons in an atom?
atomic number
8. How would you figure the number of neutrons in an atom?
9. How would you figure the number of neutrons in an atom?

$$
\text { \# ne } u \text { trons } \mathrm{a} \text { atomic mass protons }
$$

9. Each energy level has a limit on the number of electrons it can fit:

$$
\begin{aligned}
& 1^{\text {st }} \text { orbit }=\frac{2}{8} \mathrm{e}^{-} \\
& 3^{\text {rd }} \text { orbit }=-8
\end{aligned}
$$

$$
2^{\text {nd }} \text { orbit }=
$$

\qquad e^{-}
$4^{\text {th }}$ orbit $=$ \qquad $18 \quad \mathrm{e}^{-}$
10. Draw the Bohr-Rutherford diagrams for the following:
$2,8,8,18,18,36$

