SNC2D PHYSICS

LIGHT & GEOMETRIC OPTICS The Curved Lens Equations (P.454-457)

Activity: Curved Lens Equations

ISSUE

As you have learned, you can use ray diagrams to determine the characteristics of an image. However, they are prone to errors and require patience and time. There is another method – a set of quantitative algebraic relationships that are derived using geometry. But in order to use the algebraic method there are some variables and sign conventions that must be defined first.

INSTRUCTIONS (2DPHYS - WS7)

A. Complete Part 1 (Lens Terminology) and Part 2 (Sign Convention).

June 2, 2013

2DPHYS - The Thins Lens Equation

Variable	Sign	Condition	Image Type
d _o	+	always	n/a
	-	never	n/a
di	+	image on opposite side as object	real
	-	image on same side as object	virtual
h _o	+	always	n/a
	-	never	n/a
h	+	when measured upward	virtual
	-	when measured downward	real
f	+	converging lens	depends on object location
	-	diverging lens	virtual
м	+	upright image	virtual
	-	inverted image	real

