SNC2D
 PHYSICS

LIGHT \& GEOMETRIC OPTICS
The Curved Lens Equations
(P.454-457)

Activity: Curved Lens Equations
ISSUE
As you have learned, you can use ray diagrams to determine the characteristics of an image. However, they are prone to errors and require patience and time. There is another method - a set of quantitative algebraic relationships that are derived using geometry. But in order to use the algebraic method there are some variables and sign conventions that must be defined first.

INSTRUCTIONS (2DPHYS - WS7)

A. Complete Part 1 (Lens Terminology) and Part 2 (Sign Convention).
\qquad

Activity: Curved Lens Equations (WS7/Part 1)
$d_{0}=$ distance from the object to the optical centre (0)
$\mathrm{d}_{\mathrm{i}}=$ distance from the image to the optical centre (0)
$h_{0}=$ height of the object \qquad
$h_{i}=$ height of the image
$\mathrm{f}=$ focal length of the lens (i.e. distance from O to F or F^{\prime})
$M=$ the magnification of the lens \qquad

Activity: Curved Lens Equations (WS7/Part 2)
$d_{0}=$ always positive (never negative)
$\mathrm{d}_{\mathrm{i}}=$ positive for real images, negative for virtual images
$h_{0}=$ positive when measured upward, (never negative)
$h_{i}=$ positive when measured upward, negative when downward
$\mathrm{f}=$ positive for a converging lens, negative for a diverging lens
$\mathrm{M}=$ positive for real virtual images, negative for real images
\qquad

Activity: Curved Lens Equations (WS7/Part 2)

Variable	Sign	Condition	Image Type
d_{o}	+	always	n/a
	-	never	n/a
d_{i}	+	image on opposite side as object	real
	-	image on same side as object	virtual
h_{o}	+	always	n / a
	-	never	n/a
h_{i}	+	when measured upward	virtual
	-	when measured downward	real
f	+	converging lens	depends on object location
	-	diverging lens	virtual
M	+	upright image	virtual
	-	inverted image	real
June 2, 2013			

The Thin Lens Equation
Using triangle congruencies with the diagram below, a very useful equation that relates the focal length (f), the object distance $\left(d_{o}\right)$, and the image distance (d_{i}) can be derived. The equation is called the thin lens equation.

d_{i} is the distance from O to the image

Activity: The Thin Lens Equation

ISSUE

As you will discover, the thin lens equation can be used for both converging and diverging lenses. Recall that the focal length and image distance for a diverging lens are negative.

\qquad
\qquad
\qquad
INSTRUCTIONS (2DPHYS - WS7)
A. Complete Part 3 (The Thin Lens Equation \& ...), questions 1 to 5.
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad

Activity: The Thin Lens Equation (WS7/Part 3)
2. A diverging lens has a focal length of -29 cm . A virtual image of a marble is located -13 cm in front of the lens. Where is the marble (i.e. the object) located?

June 2, 2013
2DPHYS - The Thins Lens Equation

The Magnification Equation

Using the same process as before, another very useful equation known as the magnification equation can be derived. This equation relates both the heights and distances of the object and image. \qquad

\qquad
\qquad
\qquad
d_{i} is the distance from O to the image
d_{o} is the distance from O to the object \qquad

June 2, 2013
2DPHYS - The Thins Lens Equation

Activity: The Magnification Equation (WS7/Part 3)

3. A toy of height +8.4 cm is balanced in front of a converging lens. An inverted, real image of height -23 cm is noticed on the other side of the lens. What is the magnification of the lens? \qquad

June 2, 2013
2DPHYS - The Thins Lens Equation
10

Activity: The Magnification Equation (WS7/Part 3)
4. A small toy building block is placed +7.2 cm in front of a lens. An upright, virtual image of magnification +3.2 is noticed. Where is the image located? \qquad

Activity: The Magnification Equation (WS7/Part 3)
5. A coin of height +2.4 cm is placed in front of a diverging lens. An upright, virtual image of height +1.7 cm is noticed on the same side of the lens as the coin. What is the magnification of the lens? $\quad(+0.71)$ \qquad

\qquad
\qquad
\qquad
\qquad

June 2, 2013
2DPHYS - The Thins Lens Equation

Check Your Learning

TEXTBOOK (more practice?)
P. 455 Q.1-3
P. 456 Q.1-3
P. 457 Q.1-3

WIKI (PHYSICS)
Q.... 2DPHYS - WS8 (More Optics Problems)

