ANGLES IN A POLYGON

The sum of the interior angles in *any* triangle is _____°. (No matter what its size or shape!)

A quadrilateral can be divided into two triangles. Draw a diagonal in each quadrilateral below to accomplish this.

The sum of the interior angles in a quadrilateral is _____° because each of the 2 triangles contributes _____° to the angle sum.

Any polygon can be divided into triangles to determine the sum of the angles.

For example, a *pentagon* can be divided up as follows:

Complete the following chart:

POLYGON	NUMBER OF SIDES	TRIANGLES FORMED	SUM OF THE INTERIOR ANGLES
Triangle	3	1	180°
Quadrilateral	4		
Pentagon			
	6		
	7		
Octagon			
Nonagon			
	10		
100-gon	100		
		20	
			2700°
<i>n</i> -gon	n		