ANGLES IN A POLYGON

The sum of the interior angles in any triangle is \qquad ${ }^{\circ}$. (No matter what its size or shape!)

A quadrilateral can be divided into two triangles. Draw a diagonal in each quadrilateral below to accomplish this.

The sum of the interior angles in a quadrilateral is \qquad ${ }^{\circ}$ because each of the 2 triangles contributes \qquad $-$ to the angle sum.

Any polygon can be divided into triangles to determine the sum of the angles.
For example, a pentagon can be divided up as follows:

Number of triangles $=$ \qquad

Sum of angles $=\ldots \times 180^{\circ}=$ \qquad

Complete the following chart:

POLYGON	NUMBER OF SIDES	TRIANGLES FORMED	SUM OF THE INTERIOR ANGLES
Triangle	3	1	180°
Quadrilateral	4		
Pentagon			
	6		
	7		
Octagon	10		
Nonagon	100		
100 -gon			
	n		
n-gon			

