In 1637, the famous mathematician René Descartes devised a method identifying a point's position on a flat surface. He thought of using two intersecting numbered lines known as the x and y **axes** (pronounced "axes" – this is the plural of "axis") in order to plot points. The location of each point could then be identified by a pair of numbers know as the point's **coordinates**.

This **Cartesian plane**, and its invention changed mathematics forever. In analytic geometry we can represent points, lines, circles and other curves using Descartes' system.

- 1. There are two axes, the X-0xis (4) the V-0xis. Place the name of the axis at its **positive end.**
- Q_1 Q_1

- 2. Label each axis with a scale numbered at each fourth square.
- 3. The Cartesian plane is divided into _____ regions called _____ regions called ______.

 Number them in a counter-clockwise direction starting at the top right with Q1, Q2,... etc.
- 4. Points are written with the <u>X</u> co-ordinate first, and the <u>Y</u> coordinate second **inside brackets**. This is called an **ordered pair**. Label ordered pairs onto the points A to F.
- 5. The **origin** is the point where the axes intersect. The coordinates of the origin are (0,0)
- 6. State where the points have:
 - a) x coordinate 0
 - b) y coordinate 0
 - c) x coordinate negative Q_1 or Q_3
 - d) y coordinate negative \dot{Q}_3 o (\dot{Q}_4
 - e) x coordinate negative and y coordinate positive
 - f) x coordinate -4
 - g) y coordinate 3

